Infinitely many new sequences of surfaces of general type with maximal Picard number converging to the Severi line

IF 0.7 2区 数学 Q2 MATHEMATICS
Nguyen Bin , Vicente Lorenzo
{"title":"Infinitely many new sequences of surfaces of general type with maximal Picard number converging to the Severi line","authors":"Nguyen Bin ,&nbsp;Vicente Lorenzo","doi":"10.1016/j.jpaa.2025.107957","DOIUrl":null,"url":null,"abstract":"<div><div>Examples of algebraic surfaces of general type with maximal Picard number are not abundant in the literature. Moreover, most known examples either possess low invariants, lie near the Noether line <span><math><msup><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>2</mn><mi>χ</mi><mo>−</mo><mn>6</mn></math></span> or are somewhat scattered. A notable exception is Persson's sequence of double covers of the projective plane with maximal Picard number, whose invariants converge to the Severi line <span><math><msup><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>4</mn><mi>χ</mi></math></span>. This note is devoted to the construction of infinitely many new sequences of surfaces of general type with maximal Picard number whose invariants converge to the Severi line.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 6","pages":"Article 107957"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925000969","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Examples of algebraic surfaces of general type with maximal Picard number are not abundant in the literature. Moreover, most known examples either possess low invariants, lie near the Noether line K2=2χ6 or are somewhat scattered. A notable exception is Persson's sequence of double covers of the projective plane with maximal Picard number, whose invariants converge to the Severi line K2=4χ. This note is devoted to the construction of infinitely many new sequences of surfaces of general type with maximal Picard number whose invariants converge to the Severi line.
具有最大皮卡数的一般类型曲面的无限多新序列收敛于塞韦里线
具有极大皮卡德数的一般型代数曲面的实例在文献中并不多见。此外,大多数已知的例子要么具有低不变量,要么位于Noether线K2=2χ−6附近,要么有些分散。一个值得注意的例外是具有最大Picard数的投影平面的双重覆盖的Persson序列,其不变量收敛于Severi线K2=4χ。本文研究无穷多个具有极大Picard数且不变量收敛于Severi线的一般型曲面的新序列的构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信