Decoupling prediction of cooling load and optimizing control for dedicated outdoor air systems by using a hybrid artificial neural network method

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS
Yongbo Cui , Chengliang Fan , Wenhao Zhang , Xiaoqing Zhou
{"title":"Decoupling prediction of cooling load and optimizing control for dedicated outdoor air systems by using a hybrid artificial neural network method","authors":"Yongbo Cui ,&nbsp;Chengliang Fan ,&nbsp;Wenhao Zhang ,&nbsp;Xiaoqing Zhou","doi":"10.1016/j.csite.2025.106046","DOIUrl":null,"url":null,"abstract":"<div><div>Dedicated outdoor air systems (DOAS) can utilize high cooling water temperatures to achieve independent temperature and humidity control, which improves the energy efficiency of the system. Although many studies have investigated the energy consumption of DOAS under conventional controls, there is a lack of a cooling load (sensible load and latent load) decoupling control method to optimize DOAS operation. To address this challenge, this study introduces an Attention-Convolutional neural network-Long short-term memory (ACL) model, a hybrid deep learning framework explicitly designed for DOAS cooling load prediction. Unlike traditional approaches, the proposed ACL model decouples sensible and latent cooling loads, enabling precise load forecasting. First, a convolutional neural network (CNN) extracts critical cooling load features from building datasets. Finally, the ACL model-based control strategy is implemented through a co-simulation framework to optimize DOAS operating parameters. The results show demonstrate that the ACL model achieves an average prediction error of 5.7 %, with mean absolute proportional errors of 2.8 % for sensible cooling load and 1.9 % for latent cooling load. Moreover, the optimized ACL control strategy reduces DOAS power consumption by 7.7 %, ensuring energy-efficient operation in high-temperature, high-humidity environments. This study provides a new cooling load decoupling prediction control approach for DOAS, offering substantial energy savings.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"69 ","pages":"Article 106046"},"PeriodicalIF":6.4000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25003065","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Dedicated outdoor air systems (DOAS) can utilize high cooling water temperatures to achieve independent temperature and humidity control, which improves the energy efficiency of the system. Although many studies have investigated the energy consumption of DOAS under conventional controls, there is a lack of a cooling load (sensible load and latent load) decoupling control method to optimize DOAS operation. To address this challenge, this study introduces an Attention-Convolutional neural network-Long short-term memory (ACL) model, a hybrid deep learning framework explicitly designed for DOAS cooling load prediction. Unlike traditional approaches, the proposed ACL model decouples sensible and latent cooling loads, enabling precise load forecasting. First, a convolutional neural network (CNN) extracts critical cooling load features from building datasets. Finally, the ACL model-based control strategy is implemented through a co-simulation framework to optimize DOAS operating parameters. The results show demonstrate that the ACL model achieves an average prediction error of 5.7 %, with mean absolute proportional errors of 2.8 % for sensible cooling load and 1.9 % for latent cooling load. Moreover, the optimized ACL control strategy reduces DOAS power consumption by 7.7 %, ensuring energy-efficient operation in high-temperature, high-humidity environments. This study provides a new cooling load decoupling prediction control approach for DOAS, offering substantial energy savings.

Abstract Image

利用混合人工神经网络方法实现专用室外空气系统制冷负荷预测与优化控制的分离
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信