Amphidinium carterae growth in hydroponic wastewater. A sustainable approach to a microalgae-based process promoting a circular bioeconomy

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Lorenzo López-Rosales , Nazaret Ballesteros-Callejón , Yolanda Soriano-Jerez , Francisco García-Camacho , Asterio Sánchez-Mirón , Antonio Contreras-Gómez , María del Carmen Cerón-García
{"title":"Amphidinium carterae growth in hydroponic wastewater. A sustainable approach to a microalgae-based process promoting a circular bioeconomy","authors":"Lorenzo López-Rosales ,&nbsp;Nazaret Ballesteros-Callejón ,&nbsp;Yolanda Soriano-Jerez ,&nbsp;Francisco García-Camacho ,&nbsp;Asterio Sánchez-Mirón ,&nbsp;Antonio Contreras-Gómez ,&nbsp;María del Carmen Cerón-García","doi":"10.1016/j.scitotenv.2025.179183","DOIUrl":null,"url":null,"abstract":"<div><div>Hydroponic cultivation is being increasingly used worldwide for horticultural production. However, this technique consumes large quantities of freshwater and produces significant amounts of wastewater. Effluent wastewater from hydroponic cultures may contain high nitrogen (N) and phosphorus (P) concentrations, thus contributing to soil, surface, and subsurface water pollution if directly discharged into the environment; it also potentially leads to ecosystem degradation. In the present work, a synthetic hydroponic effluent wastewater was formulated to evaluate the potential of a marine microalga to remove the main nutrients (N and P) and to test its suitability for sustainable, large-scale cultivation. The marine dinoflagellate microalga <em>Amphidinium carterae</em> successfully removed 100 % of the N and P from the hydroponic wastewater. The formulation yielded comparable biomass yields (0.5 g L<sup>−1</sup>) to those of the same culture grown in a control medium but considerably increased the production of carotenoids (40 %), polyunsaturated fatty acids (17 %), and, significantly, amphidinols (56 %). Hence, the use of <em>A. carterae</em> to treat and valorise hydroponic effluents shows significant promise, supporting further investigation into utilizing hydroponic wastewater from different origins to cultivate marine microalgae that can then be used to produce agricultural bio-based fungicides and other bioproducts in line with the principles of the circular bioeconomy.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"974 ","pages":"Article 179183"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725008186","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Hydroponic cultivation is being increasingly used worldwide for horticultural production. However, this technique consumes large quantities of freshwater and produces significant amounts of wastewater. Effluent wastewater from hydroponic cultures may contain high nitrogen (N) and phosphorus (P) concentrations, thus contributing to soil, surface, and subsurface water pollution if directly discharged into the environment; it also potentially leads to ecosystem degradation. In the present work, a synthetic hydroponic effluent wastewater was formulated to evaluate the potential of a marine microalga to remove the main nutrients (N and P) and to test its suitability for sustainable, large-scale cultivation. The marine dinoflagellate microalga Amphidinium carterae successfully removed 100 % of the N and P from the hydroponic wastewater. The formulation yielded comparable biomass yields (0.5 g L−1) to those of the same culture grown in a control medium but considerably increased the production of carotenoids (40 %), polyunsaturated fatty acids (17 %), and, significantly, amphidinols (56 %). Hence, the use of A. carterae to treat and valorise hydroponic effluents shows significant promise, supporting further investigation into utilizing hydroponic wastewater from different origins to cultivate marine microalgae that can then be used to produce agricultural bio-based fungicides and other bioproducts in line with the principles of the circular bioeconomy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信