{"title":"Comparative evaluation of Al/chlorophyll/p-Si/Al device under varying irradiance intensity: Machine learning modeling vs. experimental data","authors":"F.S. Kaya , I. Orak , Z. Balcı , Z. Kılıç","doi":"10.1016/j.sna.2025.116469","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the effect of chlorophyll, a natural photosynthetic pigment, on solar cell characteristic parameters. Chlorophyll thin film layers were analyzed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The current-voltage (I-V) characteristics of an Al/p-Si/chlorophyll/Al structure were investigated to understand the device's behavior under different light intensities. The fill factor (FF) and efficiency values (ɳ), which are the characteristic parameters of the solar cell, were calculated from the current values predicted by machine learning (ML) models using the voltage values of the Al/p-Si/chlorophyll/Al devices produced and the results obtained were compared. The results demonstrate the light intensity-dependent electrical response of the Al/p-Si/chlorophyll/Al structure and provide valuable insights for further developments in organic photodetectors and solar cell technology.</div></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":"388 ","pages":"Article 116469"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424725002754","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the effect of chlorophyll, a natural photosynthetic pigment, on solar cell characteristic parameters. Chlorophyll thin film layers were analyzed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The current-voltage (I-V) characteristics of an Al/p-Si/chlorophyll/Al structure were investigated to understand the device's behavior under different light intensities. The fill factor (FF) and efficiency values (ɳ), which are the characteristic parameters of the solar cell, were calculated from the current values predicted by machine learning (ML) models using the voltage values of the Al/p-Si/chlorophyll/Al devices produced and the results obtained were compared. The results demonstrate the light intensity-dependent electrical response of the Al/p-Si/chlorophyll/Al structure and provide valuable insights for further developments in organic photodetectors and solar cell technology.
期刊介绍:
Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas:
• Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results.
• Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon.
• Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays.
• Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers.
Etc...