Andrea Bocchino , Carlota Marquez-Grana , Om Prakash Singh , Eva Melnik , Steffen Kurzhals , Giorgio C. Mutinati , Sion Coulman , Christopher Martin , Keng Wooi Ng , Mariane Massufero Vergilio , James Birchall , Paul Donovan , Paul Galvin , Conor O’Mahony
{"title":"A multifunctional platform for the production and customization of polymer-based microneedle devices","authors":"Andrea Bocchino , Carlota Marquez-Grana , Om Prakash Singh , Eva Melnik , Steffen Kurzhals , Giorgio C. Mutinati , Sion Coulman , Christopher Martin , Keng Wooi Ng , Mariane Massufero Vergilio , James Birchall , Paul Donovan , Paul Galvin , Conor O’Mahony","doi":"10.1016/j.sna.2025.116491","DOIUrl":null,"url":null,"abstract":"<div><div>Polymer microneedles (MNs) have significant potential for use in transdermal delivery and diagnostics applications due to their low cost, versatility, and compatibility with medical grade materials and industrial manufacturing processes. These polymers can also have a wide range of different and desirable properties such as biocompatibility, degradability, and flexibility. To facilitate rapid development of these devices, a multifunctional manufacturing process, easily adaptable to a range of different materials and use cases, would be highly beneficial for research and prototyping purposes. With that in mind, we have developed a multifunctional platform that may be used to produce sharp-tipped microneedle arrays with a variety of substrate materials, mechanical characteristics, electrical properties, and diagnostic functionalities. The paper first presents an outline of the platform concept and the double-sided moulding process that lies at its core, followed by a description of the various add-on steps that are used to customise the geometrical, mechanical, electrical, and functional aspects of the arrays. Finally, we illustrate the versatility of the platform with three exemplars, namely a solid, electrochemically active MN sensor for biomarker diagnostics, a fabric-backed, flexible MN electrode for biopotential monitoring, and a biodegradable array for transdermal drug delivery.</div></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":"388 ","pages":"Article 116491"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424725002973","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Polymer microneedles (MNs) have significant potential for use in transdermal delivery and diagnostics applications due to their low cost, versatility, and compatibility with medical grade materials and industrial manufacturing processes. These polymers can also have a wide range of different and desirable properties such as biocompatibility, degradability, and flexibility. To facilitate rapid development of these devices, a multifunctional manufacturing process, easily adaptable to a range of different materials and use cases, would be highly beneficial for research and prototyping purposes. With that in mind, we have developed a multifunctional platform that may be used to produce sharp-tipped microneedle arrays with a variety of substrate materials, mechanical characteristics, electrical properties, and diagnostic functionalities. The paper first presents an outline of the platform concept and the double-sided moulding process that lies at its core, followed by a description of the various add-on steps that are used to customise the geometrical, mechanical, electrical, and functional aspects of the arrays. Finally, we illustrate the versatility of the platform with three exemplars, namely a solid, electrochemically active MN sensor for biomarker diagnostics, a fabric-backed, flexible MN electrode for biopotential monitoring, and a biodegradable array for transdermal drug delivery.
期刊介绍:
Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas:
• Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results.
• Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon.
• Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays.
• Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers.
Etc...