Joseph E. Duggan Jr. , Jonathan D. Ogland-Hand , Richard S. Middleton
{"title":"Modeling CCS policy support: Implications for market performance, net emissions, and welfare","authors":"Joseph E. Duggan Jr. , Jonathan D. Ogland-Hand , Richard S. Middleton","doi":"10.1016/j.apenergy.2025.125613","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon capture and storage (CCS) is critical for addressing climate change. While governments are increasingly exploring different policy tools to incentivize its adoption, this topic has been under explored in the academic literature from a game-theoretic perspective. We examine a stylized model of CCS given different regulatory and market structure regimes to examine the incentive effects and social welfare implications of proposed policy interventions. Specifically, we examine a simple linear economy model of a wholesale electricity market in the context of a Cournot duopoly where one firm’s generation process entails CO<sub>2</sub> emissions while the second firm’s process does not. The first firm can capture and sequester 90 % of its generated emissions with CCS. We consider two possible policy interventions: a tax on net emissions and a subsidy for CCS where a firm that undertakes CCS receives a subsidy payment based on the amount of CO<sub>2</sub> sequestered. We find that CCS decreases CO<sub>2</sub> emissions relative to the case of no CCS, but without a strong enough CO<sub>2</sub> tax, a high enough sequestration subsidy can increase net emissions, relative to a lower subsidy, because of the imperfect capture rate. Interestingly, we find that CCS can lead to increases in both producer and consumer welfare while reducing net emissions. As such, we suggest that the adoption of CCS may provide a unique tool in simultaneously addressing two market failures characteristic of wholesale electricity markets: the exercise of market power and the negative externality of CO<sub>2</sub> emissions.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"389 ","pages":"Article 125613"},"PeriodicalIF":10.1000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925003435","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon capture and storage (CCS) is critical for addressing climate change. While governments are increasingly exploring different policy tools to incentivize its adoption, this topic has been under explored in the academic literature from a game-theoretic perspective. We examine a stylized model of CCS given different regulatory and market structure regimes to examine the incentive effects and social welfare implications of proposed policy interventions. Specifically, we examine a simple linear economy model of a wholesale electricity market in the context of a Cournot duopoly where one firm’s generation process entails CO2 emissions while the second firm’s process does not. The first firm can capture and sequester 90 % of its generated emissions with CCS. We consider two possible policy interventions: a tax on net emissions and a subsidy for CCS where a firm that undertakes CCS receives a subsidy payment based on the amount of CO2 sequestered. We find that CCS decreases CO2 emissions relative to the case of no CCS, but without a strong enough CO2 tax, a high enough sequestration subsidy can increase net emissions, relative to a lower subsidy, because of the imperfect capture rate. Interestingly, we find that CCS can lead to increases in both producer and consumer welfare while reducing net emissions. As such, we suggest that the adoption of CCS may provide a unique tool in simultaneously addressing two market failures characteristic of wholesale electricity markets: the exercise of market power and the negative externality of CO2 emissions.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.