Olga Murujew , Andrea Wilson , Peter Vale , Yadira Bajón-Fernández , Bruce Jefferson , Marc Pidou
{"title":"Robustness and resilience of different solid-liquid separation technologies for tertiary phosphorus removal to low levels by coagulation","authors":"Olga Murujew , Andrea Wilson , Peter Vale , Yadira Bajón-Fernández , Bruce Jefferson , Marc Pidou","doi":"10.1016/j.scitotenv.2025.179170","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, three tertiary solid separation technologies were assessed on their robustness and resilience against an effluent phosphorus target of <0.3 mg P/L at steady state and dynamic conditions. The ballasted flocculation system was found to be very robust at delivering the low P target. Alternatively, cloth filtration provided a more sustainable option for less strict consents of sub 0.5 mg P/L. The effluent from the membrane system was more variable but it was shown to meet the low consents even with increased phosphorus and solids content in the feed. A molar ratio of 1.37 Fe: P was shown to be sufficient to meet the P target at short contact times as with the ballasted flocculation process. It was highlighted that optimisation of up-stream flocculation can be a considerable factor for consistent performance. Overall, the study determined key attributes of the different technologies tested providing valuable insights for technology selection at full scale.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"974 ","pages":"Article 179170"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725008058","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, three tertiary solid separation technologies were assessed on their robustness and resilience against an effluent phosphorus target of <0.3 mg P/L at steady state and dynamic conditions. The ballasted flocculation system was found to be very robust at delivering the low P target. Alternatively, cloth filtration provided a more sustainable option for less strict consents of sub 0.5 mg P/L. The effluent from the membrane system was more variable but it was shown to meet the low consents even with increased phosphorus and solids content in the feed. A molar ratio of 1.37 Fe: P was shown to be sufficient to meet the P target at short contact times as with the ballasted flocculation process. It was highlighted that optimisation of up-stream flocculation can be a considerable factor for consistent performance. Overall, the study determined key attributes of the different technologies tested providing valuable insights for technology selection at full scale.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.