Haofeng Peng, Zixuan Fang, Ming Zhang, Mengqiang Wu
{"title":"Solvent reconstruction and interfacial fluorination strategy for high-performance polyether lithium metal batteries","authors":"Haofeng Peng, Zixuan Fang, Ming Zhang, Mengqiang Wu","doi":"10.1016/j.ssi.2025.116849","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium metal batteries based on in situ semi-solid-state polyether electrolytes have emerged as a focal point of contemporary research due to their straightforward fabrication process, high energy density, and reliable safety. The DOL monomers exhibit characteristics of low viscosity and polymerization initiated by lithium salts at room temperature, presenting a significant commercial potential for the preparation of PDOL semi-solid-state electrolytes via in situ ring-opening polymerization for high-performance lithium metal batteries. However, the intrinsic performance deficiencies and poor antioxidant properties of polyether electrolytes have severely impeded their practical application. The utilization of 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (TTE) as a diluent and fluoroethylene carbonate (FEC) as an additive for solvent reconstruction and interfacial fluorination of the semi-solid-state polyether electrolytes has effectively mitigated these issues. Density functional theory and molecular dynamics simulations demonstrate that the TTE diluent can optimize the solvent structure and enhance anionic coordination, thereby improving the electrochemical performance of PDOL-based electrolytes, which enables stable cycling of Li/Li symmetric batteries for over 2000 h at 0.1 mA cm <sup>−</sup> <sup>2</sup>. Furthermore, the introduction of the fluorinated additive FEC has achieved exceptional performance in Li/NCM811 high-voltage lithium metal batteries, with an initial discharge specific capacity of 206.3 mAh g<sup>−1</sup> at 0.1C and stable charge-discharge cycling at 0.3C.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"423 ","pages":"Article 116849"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825000682","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium metal batteries based on in situ semi-solid-state polyether electrolytes have emerged as a focal point of contemporary research due to their straightforward fabrication process, high energy density, and reliable safety. The DOL monomers exhibit characteristics of low viscosity and polymerization initiated by lithium salts at room temperature, presenting a significant commercial potential for the preparation of PDOL semi-solid-state electrolytes via in situ ring-opening polymerization for high-performance lithium metal batteries. However, the intrinsic performance deficiencies and poor antioxidant properties of polyether electrolytes have severely impeded their practical application. The utilization of 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (TTE) as a diluent and fluoroethylene carbonate (FEC) as an additive for solvent reconstruction and interfacial fluorination of the semi-solid-state polyether electrolytes has effectively mitigated these issues. Density functional theory and molecular dynamics simulations demonstrate that the TTE diluent can optimize the solvent structure and enhance anionic coordination, thereby improving the electrochemical performance of PDOL-based electrolytes, which enables stable cycling of Li/Li symmetric batteries for over 2000 h at 0.1 mA cm −2. Furthermore, the introduction of the fluorinated additive FEC has achieved exceptional performance in Li/NCM811 high-voltage lithium metal batteries, with an initial discharge specific capacity of 206.3 mAh g−1 at 0.1C and stable charge-discharge cycling at 0.3C.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.