Xiaoming Liu, Zhengwu Fang, Yubin Zhang, Yan Wang, W. Beck Andrews, Katsuyo Thornton, Neil P. Dasgupta, Miaofang Chi
{"title":"Unraveling the Origin of Grain Boundary Lithium Deficiency in Ceramic Solid Electrolytes","authors":"Xiaoming Liu, Zhengwu Fang, Yubin Zhang, Yan Wang, W. Beck Andrews, Katsuyo Thornton, Neil P. Dasgupta, Miaofang Chi","doi":"10.1021/acsenergylett.5c00117","DOIUrl":null,"url":null,"abstract":"Realizing solid electrolytes with low grain-boundary (GB) resistance is critical for advancing all-solid-state batteries. High GB resistance in SEs is often attributed to deficiencies in mobile ions at these boundaries; yet, when and how these deficiencies form during synthesis remain unclear. Here, we use a unique in situ scanning transmission electron microscopy setup to guide solid electrolyte crystallization during annealing, enabling real-time observation of GB formation at the atomic scale, with Li<sub>0.33</sub>La<sub>0.56</sub>TiO<sub>3</sub> as a model SE. We reveal an ultrathin, less than 1.5 nm thick, lithium-deficient layer that emerges at the crystallization front upon crystallization and persists as two adjacent crystals fuse to form a GB. We offer two hypotheses for the origin of the lithium-deficient layer, one based on thermodynamic stabilization and the other on kinetic constraints. Our results provide guidelines for designing synthesis strategies to reduce GB resistance in solid electrolytes.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"21 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.5c00117","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Realizing solid electrolytes with low grain-boundary (GB) resistance is critical for advancing all-solid-state batteries. High GB resistance in SEs is often attributed to deficiencies in mobile ions at these boundaries; yet, when and how these deficiencies form during synthesis remain unclear. Here, we use a unique in situ scanning transmission electron microscopy setup to guide solid electrolyte crystallization during annealing, enabling real-time observation of GB formation at the atomic scale, with Li0.33La0.56TiO3 as a model SE. We reveal an ultrathin, less than 1.5 nm thick, lithium-deficient layer that emerges at the crystallization front upon crystallization and persists as two adjacent crystals fuse to form a GB. We offer two hypotheses for the origin of the lithium-deficient layer, one based on thermodynamic stabilization and the other on kinetic constraints. Our results provide guidelines for designing synthesis strategies to reduce GB resistance in solid electrolytes.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.