Karen Macías Cárdenas, Gopolang Mohlabeng, Aaron C. Vincent
{"title":"Global fit to loopy dark matter and neutrino masses","authors":"Karen Macías Cárdenas, Gopolang Mohlabeng, Aaron C. Vincent","doi":"10.1103/physrevd.111.055024","DOIUrl":null,"url":null,"abstract":"We investigate a dark matter model that couples to the standard model through a one-loop interaction with neutrinos, where the mediator particles also generate neutrino masses. We perform a global fit that incorporates dark matter relic abundance, primordial nucleosynthesis, neutrino mass, collider, and indirect detection constraints. Thanks to the loop suppression, large couplings are allowed, and we find that the model parameters are constrained on all sides. Dark matter masses from 10 MeV to a few TeV are allowed, but sub-GeV masses are preferred for the model to also account for the heaviest neutrino mass. Though our results are valid for a single neutrino mass eigenstate at a time, the model and methods are generalizable to the full 3-flavor case. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"29 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.055024","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate a dark matter model that couples to the standard model through a one-loop interaction with neutrinos, where the mediator particles also generate neutrino masses. We perform a global fit that incorporates dark matter relic abundance, primordial nucleosynthesis, neutrino mass, collider, and indirect detection constraints. Thanks to the loop suppression, large couplings are allowed, and we find that the model parameters are constrained on all sides. Dark matter masses from 10 MeV to a few TeV are allowed, but sub-GeV masses are preferred for the model to also account for the heaviest neutrino mass. Though our results are valid for a single neutrino mass eigenstate at a time, the model and methods are generalizable to the full 3-flavor case. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.