{"title":"Odd moments in the distribution of primes","authors":"Vivian Kuperberg","doi":"10.2140/ant.2025.19.617","DOIUrl":null,"url":null,"abstract":"<p>Montgomery and Soundararajan showed that the distribution of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ψ</mi><mo stretchy=\"false\">(</mo><mi>x</mi>\n<mo>+</mo>\n<mi>H</mi><mo stretchy=\"false\">)</mo>\n<mo>−</mo>\n<mi>ψ</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math>, for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0</mn>\n<mo>≤</mo>\n<mi>x</mi>\n<mo>≤</mo>\n<mi>N</mi></math>, is approximately normal with mean <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mo>∼</mo>\n<mi>H</mi></math> and variance <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mo>∼</mo>\n<mi>H</mi><mi>log</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>N</mi><mo>∕</mo><mi>H</mi><mo stretchy=\"false\">)</mo></math>, when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>N</mi></mrow><mrow><mi>δ</mi></mrow></msup>\n<mo>≤</mo>\n<mi>H</mi>\n<mo>≤</mo> <msup><mrow><mi>N</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>δ</mi></mrow></msup> </math>. Their work depends on showing that sums <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>R</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>h</mi><mo stretchy=\"false\">)</mo></math> of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math>-term singular series are <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow></msub><msup><mrow><mo stretchy=\"false\">(</mo><mo>−</mo><mi>h</mi><mi>log</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>h</mi>\n<mo>+</mo>\n<mi>A</mi><mi>h</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mi>k</mi><mo>∕</mo><mn>2</mn></mrow></msup>\n<mo>+</mo> <msub><mrow><mi>O</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>k</mi><mo>∕</mo><mn>2</mn><mo>−</mo><mn>1</mn><mo>∕</mo><mo stretchy=\"false\">(</mo><mn>7</mn><mi>k</mi><mo stretchy=\"false\">)</mo><mo>+</mo><mi>𝜀</mi></mrow></msup><mo stretchy=\"false\">)</mo></math>, where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math> is a constant and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow></msub></math> are the Gaussian moment constants. We study lower-order terms in the size of these moments. We conjecture that when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math> is odd, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>R</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>h</mi><mo stretchy=\"false\">)</mo>\n<mo>≍</mo> <msup><mrow><mi>h</mi></mrow><mrow><mo stretchy=\"false\">(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo stretchy=\"false\">)</mo><mo>∕</mo><mn>2</mn></mrow></msup><msup><mrow><mo stretchy=\"false\">(</mo><mi>log</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>h</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mo stretchy=\"false\">(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo stretchy=\"false\">)</mo><mo>∕</mo><mn>2</mn></mrow></msup></math>. We prove an upper bound with the correct power of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>h</mi></math> when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi>\n<mo>=</mo> <mn>3</mn></math>, and prove analogous upper bounds in the function field setting when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi>\n<mo>=</mo> <mn>3</mn></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi>\n<mo>=</mo> <mn>5</mn></math>. We provide further evidence for this conjecture in the form of numerical computations. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"124 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.617","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Montgomery and Soundararajan showed that the distribution of , for , is approximately normal with mean and variance , when . Their work depends on showing that sums of -term singular series are , where is a constant and are the Gaussian moment constants. We study lower-order terms in the size of these moments. We conjecture that when is odd, . We prove an upper bound with the correct power of when , and prove analogous upper bounds in the function field setting when and . We provide further evidence for this conjecture in the form of numerical computations.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.