Odd moments in the distribution of primes

IF 0.9 1区 数学 Q2 MATHEMATICS
Vivian Kuperberg
{"title":"Odd moments in the distribution of primes","authors":"Vivian Kuperberg","doi":"10.2140/ant.2025.19.617","DOIUrl":null,"url":null,"abstract":"<p>Montgomery and Soundararajan showed that the distribution of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ψ</mi><mo stretchy=\"false\">(</mo><mi>x</mi>\n<mo>+</mo>\n<mi>H</mi><mo stretchy=\"false\">)</mo>\n<mo>−</mo>\n<mi>ψ</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math>, for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0</mn>\n<mo>≤</mo>\n<mi>x</mi>\n<mo>≤</mo>\n<mi>N</mi></math>, is approximately normal with mean <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mo>∼</mo>\n<mi>H</mi></math> and variance <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mo>∼</mo>\n<mi>H</mi><mi>log</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>N</mi><mo>∕</mo><mi>H</mi><mo stretchy=\"false\">)</mo></math>, when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>N</mi></mrow><mrow><mi>δ</mi></mrow></msup>\n<mo>≤</mo>\n<mi>H</mi>\n<mo>≤</mo> <msup><mrow><mi>N</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>δ</mi></mrow></msup> </math>. Their work depends on showing that sums <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>R</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>h</mi><mo stretchy=\"false\">)</mo></math> of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math>-term singular series are <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow></msub><msup><mrow><mo stretchy=\"false\">(</mo><mo>−</mo><mi>h</mi><mi>log</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>h</mi>\n<mo>+</mo>\n<mi>A</mi><mi>h</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mi>k</mi><mo>∕</mo><mn>2</mn></mrow></msup>\n<mo>+</mo> <msub><mrow><mi>O</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>k</mi><mo>∕</mo><mn>2</mn><mo>−</mo><mn>1</mn><mo>∕</mo><mo stretchy=\"false\">(</mo><mn>7</mn><mi>k</mi><mo stretchy=\"false\">)</mo><mo>+</mo><mi>𝜀</mi></mrow></msup><mo stretchy=\"false\">)</mo></math>, where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math> is a constant and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow></msub></math> are the Gaussian moment constants. We study lower-order terms in the size of these moments. We conjecture that when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math> is odd, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>R</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>h</mi><mo stretchy=\"false\">)</mo>\n<mo>≍</mo> <msup><mrow><mi>h</mi></mrow><mrow><mo stretchy=\"false\">(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo stretchy=\"false\">)</mo><mo>∕</mo><mn>2</mn></mrow></msup><msup><mrow><mo stretchy=\"false\">(</mo><mi>log</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>h</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mo stretchy=\"false\">(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo stretchy=\"false\">)</mo><mo>∕</mo><mn>2</mn></mrow></msup></math>. We prove an upper bound with the correct power of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>h</mi></math> when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi>\n<mo>=</mo> <mn>3</mn></math>, and prove analogous upper bounds in the function field setting when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi>\n<mo>=</mo> <mn>3</mn></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi>\n<mo>=</mo> <mn>5</mn></math>. We provide further evidence for this conjecture in the form of numerical computations. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"124 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.617","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Montgomery and Soundararajan showed that the distribution of ψ(x + H) ψ(x), for 0 x N, is approximately normal with mean H and variance Hlog (NH), when Nδ H N1δ . Their work depends on showing that sums Rk(h) of k-term singular series are μk(hlog h + Ah)k2 + Ok(hk21(7k)+𝜀), where A is a constant and μk are the Gaussian moment constants. We study lower-order terms in the size of these moments. We conjecture that when k is odd, Rk(h) h(k1)2(log h)(k+1)2. We prove an upper bound with the correct power of h when k = 3, and prove analogous upper bounds in the function field setting when k = 3 and k = 5. We provide further evidence for this conjecture in the form of numerical computations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信