{"title":"Differential torsion sensor for direct detection of ultralight vector dark matter","authors":"Ling Sun, Bram J. J. Slagmolen, Jiayi Qin","doi":"10.1103/physrevd.111.063064","DOIUrl":null,"url":null,"abstract":"Ultralight bosons with masses in the range from ∼</a:mo>10</a:mn></a:mrow>−</a:mo>22</a:mn></a:mrow></a:msup></a:mtext></a:mtext>eV</a:mi>/</a:mo>c</a:mi></a:mrow>2</a:mn></a:mrow></a:msup></a:mrow></a:math> to <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mo>∼</c:mo><c:mn>1</c:mn><c:mtext> </c:mtext><c:mtext> </c:mtext><c:mi>eV</c:mi><c:mo>/</c:mo><c:msup><c:mrow><c:mi>c</c:mi></c:mrow><c:mrow><c:mn>2</c:mn></c:mrow></c:msup></c:mrow></c:math>, are well-motivated, wavelike dark matter candidates. Particles on the lower-mass end are less explored in experiments due to their vanishingly small mass and weak coupling to the Standard Model. We propose a sensor with dual torsion pendulums for the direct detection of <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:msub><e:mrow><e:mi mathvariant=\"normal\">U</e:mi><e:mo stretchy=\"false\">(</e:mo><e:mn>1</e:mn><e:mo stretchy=\"false\">)</e:mo></e:mrow><e:mrow><e:mi>B</e:mi><e:mo>−</e:mo><e:mi>L</e:mi></e:mrow></e:msub></e:mrow></e:math> gauge boson dark matter, which can achieve an enhanced differential torque sensitivity in a frequency band of <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><j:mrow><j:mo>∼</j:mo><j:msup><j:mrow><j:mn>10</j:mn></j:mrow><j:mrow><j:mo>−</j:mo><j:mn>2</j:mn></j:mrow></j:msup><j:mi>–</j:mi><j:mn>10</j:mn><j:mtext> </j:mtext><j:mtext> </j:mtext><j:mi>Hz</j:mi></j:mrow></j:math> due to its advantages in common-mode rejection and differential angular sensitivity. We describe the design of the differential torsion sensor and present the estimated sensitivity to an ultralight dark matter field coupled to baryon minus lepton (<l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><l:mi>B</l:mi><l:mo>−</l:mo><l:mi>L</l:mi></l:math>) number, in a mass range of <n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><n:mrow><n:mo>∼</n:mo><n:msup><n:mrow><n:mn>10</n:mn></n:mrow><n:mrow><n:mo>−</n:mo><n:mn>17</n:mn></n:mrow></n:msup><n:mi>–</n:mi><n:msup><n:mrow><n:mn>10</n:mn></n:mrow><n:mrow><n:mo>−</n:mo><n:mn>13</n:mn></n:mrow></n:msup><n:mtext> </n:mtext><n:mtext> </n:mtext><n:mi>eV</n:mi><n:mo>/</n:mo><n:msup><n:mrow><n:mi>c</n:mi></n:mrow><n:mrow><n:mn>2</n:mn></n:mrow></n:msup></n:mrow></n:math>. Given a setup with meter-scale torsion pendulum beams and kg-scale test masses, the projected constraints on the coupling constant <p:math xmlns:p=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><p:msub><p:mi>g</p:mi><p:mrow><p:mi>B</p:mi><p:mo>−</p:mo><p:mi>L</p:mi></p:mrow></p:msub></p:math> can reach <r:math xmlns:r=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><r:mo>∼</r:mo><r:msup><r:mn>10</r:mn><r:mrow><r:mo>−</r:mo><r:mn>27</r:mn></r:mrow></r:msup></r:math> for a boson mass of <t:math xmlns:t=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><t:mrow><t:mo>∼</t:mo><t:msup><t:mrow><t:mn>10</t:mn></t:mrow><t:mrow><t:mo>−</t:mo><t:mn>15</t:mn></t:mrow></t:msup><t:mtext> </t:mtext><t:mtext> </t:mtext><t:mi>eV</t:mi><t:mo>/</t:mo><t:msup><t:mrow><t:mi>c</t:mi></t:mrow><t:mrow><t:mn>2</t:mn></t:mrow></t:msup></t:mrow></t:math>. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"109 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.063064","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Ultralight bosons with masses in the range from ∼10−22eV/c2 to ∼1eV/c2, are well-motivated, wavelike dark matter candidates. Particles on the lower-mass end are less explored in experiments due to their vanishingly small mass and weak coupling to the Standard Model. We propose a sensor with dual torsion pendulums for the direct detection of U(1)B−L gauge boson dark matter, which can achieve an enhanced differential torque sensitivity in a frequency band of ∼10−2–10Hz due to its advantages in common-mode rejection and differential angular sensitivity. We describe the design of the differential torsion sensor and present the estimated sensitivity to an ultralight dark matter field coupled to baryon minus lepton (B−L) number, in a mass range of ∼10−17–10−13eV/c2. Given a setup with meter-scale torsion pendulum beams and kg-scale test masses, the projected constraints on the coupling constant gB−L can reach ∼10−27 for a boson mass of ∼10−15eV/c2. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.