Tough MXene-Cellulose Nanofibril Ionotronic Dual-Network Hydrogel Films for Stable Zinc Anodes

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-03-25 DOI:10.1021/acsnano.5c01497
Mengyu Liu, Liming Zhang, Jowan Rostami, Teng Zhang, Kyle Matthews, Sheng Chen, Wenjie Fan, Yue Zhu, Jingwei Chen, Minghua Huang, Jingyi Wu, Huanlei Wang, Mahiar Max Hamedi, Feng Xu, Weiqian Tian, Lars Wågberg, Yury Gogotsi
{"title":"Tough MXene-Cellulose Nanofibril Ionotronic Dual-Network Hydrogel Films for Stable Zinc Anodes","authors":"Mengyu Liu, Liming Zhang, Jowan Rostami, Teng Zhang, Kyle Matthews, Sheng Chen, Wenjie Fan, Yue Zhu, Jingwei Chen, Minghua Huang, Jingyi Wu, Huanlei Wang, Mahiar Max Hamedi, Feng Xu, Weiqian Tian, Lars Wågberg, Yury Gogotsi","doi":"10.1021/acsnano.5c01497","DOIUrl":null,"url":null,"abstract":"Developing ionotronic interface layers for zinc anodes with superior mechanical integrity is one of the efficient strategies to suppress the growth of zinc dendrites in favor of the cycling stability of aqueous zinc-ion batteries (AZIBs). Herein, we assembled robust 2D MXene-based hydrogel films cross-linked by 1D cellulose nanofibril (CNF) dual networks, acting as interface layers to stabilize Zn anodes. The MXene-CNF hydrogel films integrated multifunctionalities, including a high in-plane toughness of 18.39 MJ m<sup>–3</sup>, high in-plane/out-of-plane elastic modulus of 0.85 and 3.65 GPa, mixed electronic/ionic (ionotronic) conductivity of 1.53 S cm<sup>–1</sup> and 0.52 mS cm<sup>–1</sup>, and high zincophilicity with a high binding energy (1.33 eV) and low migration energy barrier (0.24 eV) for Zn<sup>2+</sup>. These integrated multifunctionalities, endowed with coupled multifield effects, including strong stress confinement and uniform ionic/electronic field distributions on Zn anodes, effectively suppressed dendrite growth, as proven by experiments and simulations. An example of the MXene-CNF|Zn showed a reduced nucleation overpotential of 19 mV, an extended cycling life of over 2700 h in Zn||Zn cells, and a high capacity of 323 mAh g<sup>–1</sup> in Zn||MnO<sub>2</sub> cells, compared with bare Zn. This work offers an approach for exploring mechanically robust 1D/2D ionotronic hydrogel interface layers to stabilize the Zn anodes of AZIBs.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"102 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c01497","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing ionotronic interface layers for zinc anodes with superior mechanical integrity is one of the efficient strategies to suppress the growth of zinc dendrites in favor of the cycling stability of aqueous zinc-ion batteries (AZIBs). Herein, we assembled robust 2D MXene-based hydrogel films cross-linked by 1D cellulose nanofibril (CNF) dual networks, acting as interface layers to stabilize Zn anodes. The MXene-CNF hydrogel films integrated multifunctionalities, including a high in-plane toughness of 18.39 MJ m–3, high in-plane/out-of-plane elastic modulus of 0.85 and 3.65 GPa, mixed electronic/ionic (ionotronic) conductivity of 1.53 S cm–1 and 0.52 mS cm–1, and high zincophilicity with a high binding energy (1.33 eV) and low migration energy barrier (0.24 eV) for Zn2+. These integrated multifunctionalities, endowed with coupled multifield effects, including strong stress confinement and uniform ionic/electronic field distributions on Zn anodes, effectively suppressed dendrite growth, as proven by experiments and simulations. An example of the MXene-CNF|Zn showed a reduced nucleation overpotential of 19 mV, an extended cycling life of over 2700 h in Zn||Zn cells, and a high capacity of 323 mAh g–1 in Zn||MnO2 cells, compared with bare Zn. This work offers an approach for exploring mechanically robust 1D/2D ionotronic hydrogel interface layers to stabilize the Zn anodes of AZIBs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信