Detection of CO2 Locally Generated by Formate Dehydrogenase Using Carbonate Ion-Selective Micropipette Electrodes

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-03-25 DOI:10.1021/acsnano.5c00387
Seol Baek, Salvador Gutierrez-Portocarrero, Rokas Gerulskis, Shelley D. Minteer, Sean R. German, Henry S. White
{"title":"Detection of CO2 Locally Generated by Formate Dehydrogenase Using Carbonate Ion-Selective Micropipette Electrodes","authors":"Seol Baek, Salvador Gutierrez-Portocarrero, Rokas Gerulskis, Shelley D. Minteer, Sean R. German, Henry S. White","doi":"10.1021/acsnano.5c00387","DOIUrl":null,"url":null,"abstract":"Many technologies involve immobilizing catalysts such as enzymes on surfaces, and the catalytic activities or functional efficiencies of these surface-bound catalysts can vary depending on orientations, localized binding sites, active sites, and intrinsic molecular nature. Accurate and rapid quantification of reaction products from surface-immobilized catalysts is crucial for understanding the selectivity, mechanisms, and reaction dynamics of catalytic systems and for revealing heterogeneous catalytic activities and reaction sites for applications such as biosensors and energy conversion/generation systems. Here, we demonstrate the feasibility of localized enzymatic activity measurements using microscale carbon dioxide (CO<sub>2</sub>)-sensitive ion-selective electrode (ISE) pipettes (0.5–2.5 μm tip radius) as a probe, with in situ potentiometric scanning electrochemical microscopy (SECM). We develop carbonate (CO<sub>3</sub><sup>2–</sup>) ionophore-incorporated ISEs exhibiting a Nernstian response (26.7 mV/decade) with a detection limit of 1.72 μM and explore surface-immobilized formate dehydrogenase (FDH) activity by detecting CO<sub>2</sub> generated by the enzymatic reaction via potentiometric measurements. SECM is used for real-time spatial/temporal investigation of FDH immobilized onto the surface at a micrometer-scale resolution. Moreover, unlike voltammetric techniques based on faradaic reactions, the potentiometric measurements using ISEs allow highly sensitive and selective detection of CO<sub>3</sub><sup>2–</sup>, rendering efficient quantification of CO<sub>2</sub> without interference from solution composition changes arising from faradaic processes. The total amount of CO<sub>2</sub> generated at an FDH-immobilized Au ultramicroelectrode is quantified as a function of coenzyme, i.e., NAD<sup>+</sup>, and substrate, i.e., formate, concentrations both in constant tip–sample distance mode and variable depth mode. Finally, we demonstrate the use of the ISE to quantify CO<sub>2</sub> levels in blood serum.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"33 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c00387","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Many technologies involve immobilizing catalysts such as enzymes on surfaces, and the catalytic activities or functional efficiencies of these surface-bound catalysts can vary depending on orientations, localized binding sites, active sites, and intrinsic molecular nature. Accurate and rapid quantification of reaction products from surface-immobilized catalysts is crucial for understanding the selectivity, mechanisms, and reaction dynamics of catalytic systems and for revealing heterogeneous catalytic activities and reaction sites for applications such as biosensors and energy conversion/generation systems. Here, we demonstrate the feasibility of localized enzymatic activity measurements using microscale carbon dioxide (CO2)-sensitive ion-selective electrode (ISE) pipettes (0.5–2.5 μm tip radius) as a probe, with in situ potentiometric scanning electrochemical microscopy (SECM). We develop carbonate (CO32–) ionophore-incorporated ISEs exhibiting a Nernstian response (26.7 mV/decade) with a detection limit of 1.72 μM and explore surface-immobilized formate dehydrogenase (FDH) activity by detecting CO2 generated by the enzymatic reaction via potentiometric measurements. SECM is used for real-time spatial/temporal investigation of FDH immobilized onto the surface at a micrometer-scale resolution. Moreover, unlike voltammetric techniques based on faradaic reactions, the potentiometric measurements using ISEs allow highly sensitive and selective detection of CO32–, rendering efficient quantification of CO2 without interference from solution composition changes arising from faradaic processes. The total amount of CO2 generated at an FDH-immobilized Au ultramicroelectrode is quantified as a function of coenzyme, i.e., NAD+, and substrate, i.e., formate, concentrations both in constant tip–sample distance mode and variable depth mode. Finally, we demonstrate the use of the ISE to quantify CO2 levels in blood serum.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信