Detoxification Strategy of Titanium Oxide Nanoparticles Driving Endogenous Molecules Metabolism to Modulate Atrazine Conversion in Lactuca sativa L.

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Yuzhu Weng, Xue Bai, Mengen Kang, Yetong Ji, Haoke Wang, Yi Liu
{"title":"Detoxification Strategy of Titanium Oxide Nanoparticles Driving Endogenous Molecules Metabolism to Modulate Atrazine Conversion in Lactuca sativa L.","authors":"Yuzhu Weng, Xue Bai, Mengen Kang, Yetong Ji, Haoke Wang, Yi Liu","doi":"10.1021/acs.est.4c12333","DOIUrl":null,"url":null,"abstract":"Nanoparticles (NPs) exhibit the potential to enhance plant tolerance to organic pollutant stress, but how they drive endogenous molecules to detoxify contaminants remains to be further investigated. This study clarified the modulatory mechanisms by which foliar or root application of biosynthesized titanium oxide NPs (g-nTiO<sub>2</sub>) alleviated atrazine (ATZ) toxicity to <i>Lactuca sativa</i> L. Compared with the ATZ-alone group, 10 mg/L g-nTiO<sub>2</sub> intensified light-harvesting, photoelectron transfer, and reduced oxidative damage, thereby improving growth and inducing metabolic reprogramming. Specifically, g-nTiO<sub>2</sub> activated pathways related to energy supply and defense detoxification, while stabilizing membrane lipid and nitrogen metabolism. Furthermore, the modulation of biomarkers involved in balancing cellular homeostasis and stimulating growth by g-nTiO<sub>2</sub> ultimately boosted lettuce resistance to ATZ and physiological performance. Molecular docking analysis revealed that g-nTiO<sub>2</sub> enhanced the Phase II metabolism of ATZ by glutathione and amino acids through increasing detoxification enzyme activities by 23–44%, which confirmed the driving role of NPs in alleviating ATZ phytotoxicity to lettuce. Collectively, these findings provide a prospective nanoenabled strategy for mitigating crop sensitivity to pesticide residues for safe and sustainable agricultural production.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"9 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c12333","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoparticles (NPs) exhibit the potential to enhance plant tolerance to organic pollutant stress, but how they drive endogenous molecules to detoxify contaminants remains to be further investigated. This study clarified the modulatory mechanisms by which foliar or root application of biosynthesized titanium oxide NPs (g-nTiO2) alleviated atrazine (ATZ) toxicity to Lactuca sativa L. Compared with the ATZ-alone group, 10 mg/L g-nTiO2 intensified light-harvesting, photoelectron transfer, and reduced oxidative damage, thereby improving growth and inducing metabolic reprogramming. Specifically, g-nTiO2 activated pathways related to energy supply and defense detoxification, while stabilizing membrane lipid and nitrogen metabolism. Furthermore, the modulation of biomarkers involved in balancing cellular homeostasis and stimulating growth by g-nTiO2 ultimately boosted lettuce resistance to ATZ and physiological performance. Molecular docking analysis revealed that g-nTiO2 enhanced the Phase II metabolism of ATZ by glutathione and amino acids through increasing detoxification enzyme activities by 23–44%, which confirmed the driving role of NPs in alleviating ATZ phytotoxicity to lettuce. Collectively, these findings provide a prospective nanoenabled strategy for mitigating crop sensitivity to pesticide residues for safe and sustainable agricultural production.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信