Nanoscale phosphorus-based agrochemicals enhance tomato and rice growth via positively modulating the growth-associated gene expression and endophytic microbial community

IF 5.8 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mengchen Tian, Zihao Zhao, Qingqing Li, Zeyu Cai, Shuai Wang, Chuanxin Ma, Weili Jia, Xinxin Xu, Anqi Liang, Jason C. White, Baoshan Xing
{"title":"Nanoscale phosphorus-based agrochemicals enhance tomato and rice growth via positively modulating the growth-associated gene expression and endophytic microbial community","authors":"Mengchen Tian, Zihao Zhao, Qingqing Li, Zeyu Cai, Shuai Wang, Chuanxin Ma, Weili Jia, Xinxin Xu, Anqi Liang, Jason C. White, Baoshan Xing","doi":"10.1039/d5en00140d","DOIUrl":null,"url":null,"abstract":"Nano-hydroxyapatite (nHA) has attracted increasing attention as a potential novel fertilizer. The present study investigated the effects of root exposure to nHAs (20 nm-nHA, 60 nm-nHA, 1% Cu-nHA, and 10% Cu-nHA) at 50 mg/kg on the growth and development of tomato (Solanum lycopersicum L.) and rice (Oryza sativa L.) seedlings for 50 days. Compared with the control, different types of 50 mg/kg nHA increased the biomass of seedlings by 10.7%-30.9%; for example, 20 nHA significantly increased the fresh weight of the two plant species by 17.2% and 29.2%, respectively. Additionally, 20 nm-nHA and 1% Cu-nHA altered the diversity of plant endophytic microbial communities and increased the abundance of plant-associated beneficial microorganisms, including Glomeromycotina, Funneliformis, and Blastocladiomycota. Transcriptomic analysis suggests that 20 nm-nHA and 1%Cu-nHA induced transcriptional reprogramming in exposed seedlings. KEGG pathway analysis shows that root exposure to 20 nm-nHA and 1% Cu-nHA promoted plant hormone signal transduction pathways in both tomato and rice roots; and, 1% Cu-nHA promoted photosynthesis and amino acid metabolism. Overall, this work demonstrates that root exposure to 50 mg/kg 20 nm-nHA significantly improves crop growth, and provides valuable insight into the development of novel nanoscale phosphorus fertilizers as a sustainable path for precision agriculture.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"46 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d5en00140d","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nano-hydroxyapatite (nHA) has attracted increasing attention as a potential novel fertilizer. The present study investigated the effects of root exposure to nHAs (20 nm-nHA, 60 nm-nHA, 1% Cu-nHA, and 10% Cu-nHA) at 50 mg/kg on the growth and development of tomato (Solanum lycopersicum L.) and rice (Oryza sativa L.) seedlings for 50 days. Compared with the control, different types of 50 mg/kg nHA increased the biomass of seedlings by 10.7%-30.9%; for example, 20 nHA significantly increased the fresh weight of the two plant species by 17.2% and 29.2%, respectively. Additionally, 20 nm-nHA and 1% Cu-nHA altered the diversity of plant endophytic microbial communities and increased the abundance of plant-associated beneficial microorganisms, including Glomeromycotina, Funneliformis, and Blastocladiomycota. Transcriptomic analysis suggests that 20 nm-nHA and 1%Cu-nHA induced transcriptional reprogramming in exposed seedlings. KEGG pathway analysis shows that root exposure to 20 nm-nHA and 1% Cu-nHA promoted plant hormone signal transduction pathways in both tomato and rice roots; and, 1% Cu-nHA promoted photosynthesis and amino acid metabolism. Overall, this work demonstrates that root exposure to 50 mg/kg 20 nm-nHA significantly improves crop growth, and provides valuable insight into the development of novel nanoscale phosphorus fertilizers as a sustainable path for precision agriculture.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science: Nano
Environmental Science: Nano CHEMISTRY, MULTIDISCIPLINARY-ENVIRONMENTAL SCIENCES
CiteScore
12.20
自引率
5.50%
发文量
290
审稿时长
2.1 months
期刊介绍: Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas: Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability Nanomaterial interactions with biological systems and nanotoxicology Environmental fate, reactivity, and transformations of nanoscale materials Nanoscale processes in the environment Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信