{"title":"Microtubule motors of opposite polarity cooperate rather than compete in cargo transport","authors":"Steven M. Markus","doi":"10.1038/s41594-025-01524-6","DOIUrl":null,"url":null,"abstract":"Microtubule-based cargo transport relies on the actions of dynein and kinesins, motors that walk in opposite directions yet act together to ensure appropriate distribution of cargos in cells. Research now provides mechanistic insights into how these seemingly antagonistic motors collaborate, rather than compete, to promote each other’s activities.","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature structural & molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41594-025-01524-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Microtubule-based cargo transport relies on the actions of dynein and kinesins, motors that walk in opposite directions yet act together to ensure appropriate distribution of cargos in cells. Research now provides mechanistic insights into how these seemingly antagonistic motors collaborate, rather than compete, to promote each other’s activities.