Mechanistic Insights into the Inhibitory Role of Soil Humic Components in Iron (Oxyhydr)oxide Formation: From In Situ Kinetics to Molecular Thermodynamics

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Xinfei Ge, Xin Xiao, Yuyao Zhang, Xiaoying Zhu, Chiheng Chu, Baoliang Chen
{"title":"Mechanistic Insights into the Inhibitory Role of Soil Humic Components in Iron (Oxyhydr)oxide Formation: From In Situ Kinetics to Molecular Thermodynamics","authors":"Xinfei Ge, Xin Xiao, Yuyao Zhang, Xiaoying Zhu, Chiheng Chu, Baoliang Chen","doi":"10.1021/acs.est.4c12300","DOIUrl":null,"url":null,"abstract":"Due to the close spatial proximity and strong reactivity, soil humic components inevitably participate in iron (Fe) (oxyhydr)oxide formation, holding significant importance in contaminant immobilization, carbon cycling, and nutrient availability. Yet, the regulatory role of different humic components involved in the initial formation of Fe (oxyhydr)oxides is still lacking. In this study, we identified the characteristic formation periods of ferrihydrite (Fh), the initial phase of Fe (oxyhydr)oxides, through real-time monitoring of solution pH and in situ observations of precipitated Fh nanoparticles in the absence and presence of different humic components. The kinetics of Fh formation were quantified at micrometer and nanometer scales using Raman spectroscopy (RS) and atomic force microscopy (AFM), respectively. Results indicated that the extension of induction time, retardation of phase occurrence, and inhibition of nucleation rates for Fh formation were all dependent on the specific humic component with an order of fulvic acid (FA) &gt; humic acid (HA) &gt; humin (HM). Nanoscale data analysis revealed that the thermodynamic barrier to Fh nucleation increased by maximizing the interfacial free energy (γ) of the reaction system. Through molecular bonding quantification, AFM-based dynamic force spectroscopy (DFS) measurements demonstrated a linear relationship between Gibbs free energies (Δ<i>G</i><sub>b</sub>) of soil organic matter (SOM) binding to Fh and γ within the classical nucleation theory (CNT), linking heterogeneous nucleation barriers with organo-mineral bonding. This study is the first to provide in situ evidence of the inhibitory effects of soil humic components on the formation of Fe (oxyhydr)oxides and quantitatively establish that higher energy barriers to nucleation correlate with stronger organo-mineral bonding. This relationship suggests that good organic binders are good inhibitors for mineral formation, offering a novel perspective for predicting the formation and fate of soil minerals through the lens of organo-mineral binding free energies.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"29 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c12300","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the close spatial proximity and strong reactivity, soil humic components inevitably participate in iron (Fe) (oxyhydr)oxide formation, holding significant importance in contaminant immobilization, carbon cycling, and nutrient availability. Yet, the regulatory role of different humic components involved in the initial formation of Fe (oxyhydr)oxides is still lacking. In this study, we identified the characteristic formation periods of ferrihydrite (Fh), the initial phase of Fe (oxyhydr)oxides, through real-time monitoring of solution pH and in situ observations of precipitated Fh nanoparticles in the absence and presence of different humic components. The kinetics of Fh formation were quantified at micrometer and nanometer scales using Raman spectroscopy (RS) and atomic force microscopy (AFM), respectively. Results indicated that the extension of induction time, retardation of phase occurrence, and inhibition of nucleation rates for Fh formation were all dependent on the specific humic component with an order of fulvic acid (FA) > humic acid (HA) > humin (HM). Nanoscale data analysis revealed that the thermodynamic barrier to Fh nucleation increased by maximizing the interfacial free energy (γ) of the reaction system. Through molecular bonding quantification, AFM-based dynamic force spectroscopy (DFS) measurements demonstrated a linear relationship between Gibbs free energies (ΔGb) of soil organic matter (SOM) binding to Fh and γ within the classical nucleation theory (CNT), linking heterogeneous nucleation barriers with organo-mineral bonding. This study is the first to provide in situ evidence of the inhibitory effects of soil humic components on the formation of Fe (oxyhydr)oxides and quantitatively establish that higher energy barriers to nucleation correlate with stronger organo-mineral bonding. This relationship suggests that good organic binders are good inhibitors for mineral formation, offering a novel perspective for predicting the formation and fate of soil minerals through the lens of organo-mineral binding free energies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信