Marie Le Naour--Vernet, Mounia Lahfa, Josephine H. R. Maidment, André Padilla, Christian Roumestand, Karine de Guillen, Thomas Kroj, Stella Césari
{"title":"Structure-guided insights into the biology of fungal effectors","authors":"Marie Le Naour--Vernet, Mounia Lahfa, Josephine H. R. Maidment, André Padilla, Christian Roumestand, Karine de Guillen, Thomas Kroj, Stella Césari","doi":"10.1111/nph.70075","DOIUrl":null,"url":null,"abstract":"<p>Phytopathogenic fungi cause enormous yield losses in many crops, threatening both agricultural production and global food security. To infect plants, they secrete effectors targeting various cellular processes in the host. Putative effector genes are numerous in fungal genomes, and they generally encode proteins with no sequence homology to each other or to other known proteins or domains. Recent studies have elucidated and predicted three-dimensional structures of effectors from a wide diversity of plant pathogenic fungi, revealing a limited number of conserved folds. Effectors with very diverse amino acid sequences can thereby be grouped into families based on structural homology. Some structural families are conserved in many different fungi, and some are expanded in specific fungal taxa. Here, we describe the features of these structural families and discuss recent advances in predicting new structural families. We highlight the contribution of structural analyses to deepen our understanding of the function and evolution of fungal effectors. We also discuss prospects offered by advances in structural modeling for predicting and studying the virulence targets of fungal effectors in plants.</p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"246 4","pages":"1460-1477"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.70075","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/nph.70075","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Phytopathogenic fungi cause enormous yield losses in many crops, threatening both agricultural production and global food security. To infect plants, they secrete effectors targeting various cellular processes in the host. Putative effector genes are numerous in fungal genomes, and they generally encode proteins with no sequence homology to each other or to other known proteins or domains. Recent studies have elucidated and predicted three-dimensional structures of effectors from a wide diversity of plant pathogenic fungi, revealing a limited number of conserved folds. Effectors with very diverse amino acid sequences can thereby be grouped into families based on structural homology. Some structural families are conserved in many different fungi, and some are expanded in specific fungal taxa. Here, we describe the features of these structural families and discuss recent advances in predicting new structural families. We highlight the contribution of structural analyses to deepen our understanding of the function and evolution of fungal effectors. We also discuss prospects offered by advances in structural modeling for predicting and studying the virulence targets of fungal effectors in plants.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.