Unlocking the Potential of Aqueous Zinc-Ion Batteries: Hybrid SEI Construction through Bifunctional Regulator-Assisted Electrolyte Engineering

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shi Wang, Junjie Li, Binze Yang, Bo Zhang, Zihan Zhang, Shoubin Zhou, Qian Wang, Jing Ma, Zhong Jin
{"title":"Unlocking the Potential of Aqueous Zinc-Ion Batteries: Hybrid SEI Construction through Bifunctional Regulator-Assisted Electrolyte Engineering","authors":"Shi Wang, Junjie Li, Binze Yang, Bo Zhang, Zihan Zhang, Shoubin Zhou, Qian Wang, Jing Ma, Zhong Jin","doi":"10.1021/acs.nanolett.5c00533","DOIUrl":null,"url":null,"abstract":"Aqueous zinc-ion batteries (AZIBs) represent promising candidates for energy storage devices, because of their inherent high safety and cost efficiency. However, challenges such as uneven zinc ion deposition during electrochemical reduction and anode interface side reactions pose significant obstacles to their advancement and practical deployment. Herein, a medium-concentration aqueous electrolyte combined with a bifunctional regulator (aspartame) is developed to address these issues. Practical validation experiments and theoretical calculations demonstrate that the medium-concentration Zn(OTf)<sub>2</sub> aqueous electrolyte containing Aspartame can form a robust hybrid solid electrolyte interface (SEI) containing ZnF<sub>2</sub> and ZnS by simultaneously modulating the Zn<sup>2+</sup> solvation structure and optimizing the metal-molecule interface, thereby enabling dense Zn deposition. It achieves dendrite-free Zn plating and stripping and excellent Zn reversibility. Significantly, the Zn||V<sub>2</sub>O<sub>5</sub> full cell exhibits an average capacity of 240 mAh g<sup>–1</sup> over 8000 cycles at 5 A g<sup>–1</sup>. This work provides new insight into solvation and interface design for high-performance AZIBs.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"93 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c00533","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc-ion batteries (AZIBs) represent promising candidates for energy storage devices, because of their inherent high safety and cost efficiency. However, challenges such as uneven zinc ion deposition during electrochemical reduction and anode interface side reactions pose significant obstacles to their advancement and practical deployment. Herein, a medium-concentration aqueous electrolyte combined with a bifunctional regulator (aspartame) is developed to address these issues. Practical validation experiments and theoretical calculations demonstrate that the medium-concentration Zn(OTf)2 aqueous electrolyte containing Aspartame can form a robust hybrid solid electrolyte interface (SEI) containing ZnF2 and ZnS by simultaneously modulating the Zn2+ solvation structure and optimizing the metal-molecule interface, thereby enabling dense Zn deposition. It achieves dendrite-free Zn plating and stripping and excellent Zn reversibility. Significantly, the Zn||V2O5 full cell exhibits an average capacity of 240 mAh g–1 over 8000 cycles at 5 A g–1. This work provides new insight into solvation and interface design for high-performance AZIBs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信