The Life and Times of Star-forming Cores: An Analysis of Dense Gas in the STARFORGE Simulations

Stella S. R. Offner, Josh Taylor and Michael Y. Grudíc
{"title":"The Life and Times of Star-forming Cores: An Analysis of Dense Gas in the STARFORGE Simulations","authors":"Stella S. R. Offner, Josh Taylor and Michael Y. Grudíc","doi":"10.3847/1538-4357/adb71d","DOIUrl":null,"url":null,"abstract":"Dense gas in molecular clouds is an important signature of ongoing and future star formation. We identify and track dense cores in the starforge simulations, following the core evolution from birth through dispersal by stellar feedback for typical Milky Way cloud conditions. Only ∼8% of cores host protostars, and most disperse before forming stars. The median starless and protostellar core lifetimes are ∼0.5–0.6 Myr and ∼0.8–1.1 Myr, respectively, where the protostellar phase lasts Myr. While core evolution is stochastic, we find that virial ratios and line widths decline in prestellar cores, coincident with turbulent decay. Collapse occurs over ∼0.1 Myr, once the central density exceeds ≳106 cm−3. Starless cores, only, follow line-width–size and mass–size relations, σ ∝ R0.3 and M ∝ R1. The core median mass, radius, and velocity dispersion scale weakly with the cloud magnetic field strength. We cluster the core properties and find that protostellar cores have >80% likelihood of belonging to three particular groups that are characterized by high central densities, compact radii, and lower virial parameters. Overall, core evolution appears to be universally set by the interplay of gravity and magnetized turbulence, while stellar feedback dictates protostellar core properties and sets the protostellar phase lifetime.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/adb71d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dense gas in molecular clouds is an important signature of ongoing and future star formation. We identify and track dense cores in the starforge simulations, following the core evolution from birth through dispersal by stellar feedback for typical Milky Way cloud conditions. Only ∼8% of cores host protostars, and most disperse before forming stars. The median starless and protostellar core lifetimes are ∼0.5–0.6 Myr and ∼0.8–1.1 Myr, respectively, where the protostellar phase lasts Myr. While core evolution is stochastic, we find that virial ratios and line widths decline in prestellar cores, coincident with turbulent decay. Collapse occurs over ∼0.1 Myr, once the central density exceeds ≳106 cm−3. Starless cores, only, follow line-width–size and mass–size relations, σ ∝ R0.3 and M ∝ R1. The core median mass, radius, and velocity dispersion scale weakly with the cloud magnetic field strength. We cluster the core properties and find that protostellar cores have >80% likelihood of belonging to three particular groups that are characterized by high central densities, compact radii, and lower virial parameters. Overall, core evolution appears to be universally set by the interplay of gravity and magnetized turbulence, while stellar feedback dictates protostellar core properties and sets the protostellar phase lifetime.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信