{"title":"Moderate Absorption and Low Scattering: Near-infrared Illumination for Clear Imaging through Highly Turbid Water","authors":"Yiwen Wang, Peiyang Liu, Tianxiang Wu, Zhe Feng, Ying Liu, Jun Qian","doi":"10.1002/lpor.202402067","DOIUrl":null,"url":null,"abstract":"Optical imaging through highly turbid water (<span data-altimg=\"/cms/asset/3dc6264d-c2b2-41a9-98e5-2fa909dd47a9/lpor202402067-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"1\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/lpor202402067-math-0001.png\"><mjx-semantics><mjx-mo data-semantic- data-semantic-role=\"inequality\" data-semantic-speech=\"greater than\" data-semantic-type=\"relation\"><mjx-c></mjx-c></mjx-mo></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:18638880:media:lpor202402067:lpor202402067-math-0001\" display=\"inline\" location=\"graphic/lpor202402067-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mo data-semantic-=\"\" data-semantic-role=\"inequality\" data-semantic-speech=\"greater than\" data-semantic-type=\"relation\">></mo>$>$</annotation></semantics></math></mjx-assistive-mml></mjx-container>50 NTU) presents significant challenges due to strong photon scattering effect that impedes effective detection of light signal. Using Monte Carlo simulation, it is found that moderate light absorption can improve image quality, while photon scattering is unequivocally detrimental. To achieve clear imaging in highly turbid water, the wavelength of illumination light has been red-shifted from the traditionally utilized blue-green to near-infrared, which has moderate absorption and low scattering. Experimental results demonstrate that near-infrared illumination is helpful to the detection of target while visible illumination causes the loss of target information. This provides a simple optical imaging method for extracting signals from targets in highly turbid water, without the requirement of complex equipment. Furthermore, the negative effect of backscattering background under forward-illumination mode on imaging contrast is confirmed, and the back-illumination mode is proposed to eliminate its interference. Finally, the number and movement of fish are successfully observed in real time through the simulated aquaculture pond, using the near-infrared lateral-illumination, and the research has the potential to be applied in various turbid underwater imaging scenarios.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"57 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202402067","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Optical imaging through highly turbid water (50 NTU) presents significant challenges due to strong photon scattering effect that impedes effective detection of light signal. Using Monte Carlo simulation, it is found that moderate light absorption can improve image quality, while photon scattering is unequivocally detrimental. To achieve clear imaging in highly turbid water, the wavelength of illumination light has been red-shifted from the traditionally utilized blue-green to near-infrared, which has moderate absorption and low scattering. Experimental results demonstrate that near-infrared illumination is helpful to the detection of target while visible illumination causes the loss of target information. This provides a simple optical imaging method for extracting signals from targets in highly turbid water, without the requirement of complex equipment. Furthermore, the negative effect of backscattering background under forward-illumination mode on imaging contrast is confirmed, and the back-illumination mode is proposed to eliminate its interference. Finally, the number and movement of fish are successfully observed in real time through the simulated aquaculture pond, using the near-infrared lateral-illumination, and the research has the potential to be applied in various turbid underwater imaging scenarios.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.