Athermal Forward Stimulated Brillouin Scattering

IF 9.8 1区 物理与天体物理 Q1 OPTICS
Yuli Ren, Tianfu Li, Ruogu Wang, Hongwei Li, Dexin Ba, Yongkang Dong
{"title":"Athermal Forward Stimulated Brillouin Scattering","authors":"Yuli Ren, Tianfu Li, Ruogu Wang, Hongwei Li, Dexin Ba, Yongkang Dong","doi":"10.1002/lpor.202402071","DOIUrl":null,"url":null,"abstract":"Forward-stimulated Brillouin scattering (FSBS) in optical waveguides is a nonlinear optical effect that involves the acousto-optic interaction between co-propagating light and guided acoustic waves, showcasing significant potential for applications in integrated photonic and sensing fields. However, the resonance frequency of guided acoustic waves stimulated by FSBS is highly sensitive to fluctuations in ambient temperature, leading to uncertainty in the frequency evaluation of the FSBS system. Herein, the novel mechanism of “athermal FSBS” is proposed, where the resonance frequency remains unaffected by temperature variations. Through simulation and experimentation, the FSBS spectra characteristics of aluminum-coated optical fiber are demonstrated to be insensitive to temperature fluctuations when the ratio of the radius of the silica to the thickness of the aluminum is ≈2.21; at this point, the temperature dependence of the acoustic velocity of the aluminum coating is precisely counterbalanced with that of the cladding material. Meanwhile, this research confirms that the temperature property of the central frequency of FSBS spectra in aluminum-coated fibers can be controlled by modulating the optomechanical interaction. Thermally stabilized aluminized waveguides are expected to be utilized in athermal fiber lasers, filters, and on-chip silicon waveguides, thereby advancing the progression of FSBS in the integrated photonics domain.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"58 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202402071","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Forward-stimulated Brillouin scattering (FSBS) in optical waveguides is a nonlinear optical effect that involves the acousto-optic interaction between co-propagating light and guided acoustic waves, showcasing significant potential for applications in integrated photonic and sensing fields. However, the resonance frequency of guided acoustic waves stimulated by FSBS is highly sensitive to fluctuations in ambient temperature, leading to uncertainty in the frequency evaluation of the FSBS system. Herein, the novel mechanism of “athermal FSBS” is proposed, where the resonance frequency remains unaffected by temperature variations. Through simulation and experimentation, the FSBS spectra characteristics of aluminum-coated optical fiber are demonstrated to be insensitive to temperature fluctuations when the ratio of the radius of the silica to the thickness of the aluminum is ≈2.21; at this point, the temperature dependence of the acoustic velocity of the aluminum coating is precisely counterbalanced with that of the cladding material. Meanwhile, this research confirms that the temperature property of the central frequency of FSBS spectra in aluminum-coated fibers can be controlled by modulating the optomechanical interaction. Thermally stabilized aluminized waveguides are expected to be utilized in athermal fiber lasers, filters, and on-chip silicon waveguides, thereby advancing the progression of FSBS in the integrated photonics domain.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信