{"title":"Logarithmic correction to the entropy of a Kerr-Newman family of black holes in U(1)2 -charged STU supergravity models","authors":"Sudip Karan, Gurmeet Singh Punia, Surajit Biswas","doi":"10.1103/physrevd.111.066016","DOIUrl":null,"url":null,"abstract":"The leading quantum-gravitational correction to the black hole entropy is known to be a universal logarithmic term. In this study, we investigate the logarithmic corrections for the black holes in the STU supergravity models, which are a bosonic truncation into a specific class of U</a:mi>(</a:mo>1</a:mn>)</a:mo>2</a:mn></a:msup></a:math>-charged Einstein-Maxwell-dilaton theory. We demonstrate how the entire Kerr-Newman-AdS and Kerr-Newman family of black holes can be recovered within the gauged and ungauged STU supergravity models as special embedding choices in 4D. Logarithmic corrections are computed using two distinct Euclidean quantum gravity setups for extremal and nonextremal limits of all embedded rotating, static, charged, and neutral black holes. Our calculations employ the on-shell heat kernel method based Seeley-DeWitt expansion computations. Notably, all the <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:msub><e:mrow><e:mi>AdS</e:mi></e:mrow><e:mrow><e:mn>4</e:mn></e:mrow></e:msub></e:mrow></e:math> results exhibit a confirmed nontopological nature as compared to the flat counterparts, offering a natural and more comprehensive “infrared window into the microstates” of black holes. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"25 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.066016","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The leading quantum-gravitational correction to the black hole entropy is known to be a universal logarithmic term. In this study, we investigate the logarithmic corrections for the black holes in the STU supergravity models, which are a bosonic truncation into a specific class of U(1)2-charged Einstein-Maxwell-dilaton theory. We demonstrate how the entire Kerr-Newman-AdS and Kerr-Newman family of black holes can be recovered within the gauged and ungauged STU supergravity models as special embedding choices in 4D. Logarithmic corrections are computed using two distinct Euclidean quantum gravity setups for extremal and nonextremal limits of all embedded rotating, static, charged, and neutral black holes. Our calculations employ the on-shell heat kernel method based Seeley-DeWitt expansion computations. Notably, all the AdS4 results exhibit a confirmed nontopological nature as compared to the flat counterparts, offering a natural and more comprehensive “infrared window into the microstates” of black holes. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.