A Sustainable and Scalable Approach for In-Situ Induction of Gradient Nucleation Sites in Biomass-Derived Interface Layers for Ultra-Stable Aqueous Zinc Metal Batteries

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xin Liu, Jia-Wei Qian, Jing-Wei Chen, Yun-Kai Xu, Wei-Yi Wang, Wei-Xu Dong, Wei Hu, Guo-Rui Cai, Jun Lu, Shu-Hong Yu, Li-Feng Chen
{"title":"A Sustainable and Scalable Approach for In-Situ Induction of Gradient Nucleation Sites in Biomass-Derived Interface Layers for Ultra-Stable Aqueous Zinc Metal Batteries","authors":"Xin Liu, Jia-Wei Qian, Jing-Wei Chen, Yun-Kai Xu, Wei-Yi Wang, Wei-Xu Dong, Wei Hu, Guo-Rui Cai, Jun Lu, Shu-Hong Yu, Li-Feng Chen","doi":"10.1002/anie.202504613","DOIUrl":null,"url":null,"abstract":"Aqueous zinc metal batteries are promising candidates for large-grid energy storage due to their safety, cost-effectiveness, and durability. However, challenges like dendrite growth, corrosion, and the hydrogen evolution reaction (HER) on the zinc anode hinder their performance. Herein, we propose a sustainable and scalable approach to form a copper gluconate@carboxymethyl chitosan@kaolin (CuCK) interface layer, inducing gradient nucleation sites via in-situ galvanic and galvanostatic processes. The biomass-based CuCK coating features a gradient CuxZny alloy structure that homogenizes interfacial electric field distribution and enhances electrochemical stability. Furthermore, the incorporated Cu2+-loaded kaolin and carboxymethyl chitosan regulate Zn2+ flux, accelerate Zn2+ desolvation, and suppress HER. The resulting Zn@CuCK anode achieves a high cumulative capacity of 5500 mAh cm−2 in symmetrical cells, exhibits excellent durability in Zn@CuCK//NaV3O8·1.5H2O full cells across a wide temperature range (−30 to 60 °C), and endows the assembly of pouch cells with high energy density.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"71 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202504613","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc metal batteries are promising candidates for large-grid energy storage due to their safety, cost-effectiveness, and durability. However, challenges like dendrite growth, corrosion, and the hydrogen evolution reaction (HER) on the zinc anode hinder their performance. Herein, we propose a sustainable and scalable approach to form a copper gluconate@carboxymethyl chitosan@kaolin (CuCK) interface layer, inducing gradient nucleation sites via in-situ galvanic and galvanostatic processes. The biomass-based CuCK coating features a gradient CuxZny alloy structure that homogenizes interfacial electric field distribution and enhances electrochemical stability. Furthermore, the incorporated Cu2+-loaded kaolin and carboxymethyl chitosan regulate Zn2+ flux, accelerate Zn2+ desolvation, and suppress HER. The resulting Zn@CuCK anode achieves a high cumulative capacity of 5500 mAh cm−2 in symmetrical cells, exhibits excellent durability in Zn@CuCK//NaV3O8·1.5H2O full cells across a wide temperature range (−30 to 60 °C), and endows the assembly of pouch cells with high energy density.
在生物质界面层中原位诱导梯度成核点的可持续和可扩展方法,用于制造超稳定水性锌金属电池
锌金属水电池因其安全性、成本效益和耐用性而成为大电网储能的理想选择。然而,锌阳极上的枝晶生长、腐蚀和氢进化反应(HER)等挑战阻碍了它们的性能。在此,我们提出了一种可持续、可扩展的方法来形成葡萄糖酸铜@羧甲基壳聚糖@高岭土(CuCK)界面层,通过原位电化学和电静电过程诱导梯度成核点。生物质基 CuCK 涂层具有梯度 CuxZny 合金结构,可均匀界面电场分布并增强电化学稳定性。此外,掺入 Cu2+ 的高岭土和羧甲基壳聚糖可调节 Zn2+ 通量,加速 Zn2+ 脱溶,抑制 HER。由此产生的 Zn@CuCK 阳极在对称电池中实现了 5500 mAh cm-2 的高累积容量,在 Zn@CuCK//NaV3O8-1.5H2O 完整电池的宽温度范围(-30 至 60 °C)内表现出卓越的耐久性,并使组装的袋式电池具有高能量密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信