Dongliang Gong, Junyi Yang, Shu Zhang, Shashi Pandey, Dapeng Cui, Jacob P. C. Ruff, Lukas Horak, Evguenia Karapetrova, Jong-Woo Kim, Philip J. Ryan, Lin Hao, Yang Zhang, Jian Liu
{"title":"Large asymmetric anomalous Nernst effect in the antiferromagnet SrIr0.8Sn0.2O3","authors":"Dongliang Gong, Junyi Yang, Shu Zhang, Shashi Pandey, Dapeng Cui, Jacob P. C. Ruff, Lukas Horak, Evguenia Karapetrova, Jong-Woo Kim, Philip J. Ryan, Lin Hao, Yang Zhang, Jian Liu","doi":"10.1038/s41467-025-58020-0","DOIUrl":null,"url":null,"abstract":"<p>A large anomalous Nernst effect is essential for thermoelectric energy-harvesting in the transverse geometry without external magnetic field. It’s often connected with anomalous Hall effect, especially when electronic Berry curvature is believed to be the driving force. This approach implicitly assumes the same symmetry for the Nernst and Hall coefficients, which is however not necessarily true. Here we report a large anomalous Nernst effect in antiferromagnetic SrIr<sub>0.8</sub>Sn<sub>0.2</sub>O<sub>3</sub> that defies the antisymmetric constraint on the anomalous Hall effect imposed by the Onsager reciprocal relation. The observed spontaneous Nernst thermopower quickly reaches the sub-<i>μ</i>V/K level below the Néel transition around 250 K, which is comparable with many topological antiferromagnetic semimetals and far excels other magnetic oxides. Our analysis indicates that the coexistence of significant symmetric and antisymmetric contributions plays a key role, pointing to the importance of extracting both contributions and a new pathway to enhanced anomalous Nernst effect for transverse thermoelectrics.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"25 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58020-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A large anomalous Nernst effect is essential for thermoelectric energy-harvesting in the transverse geometry without external magnetic field. It’s often connected with anomalous Hall effect, especially when electronic Berry curvature is believed to be the driving force. This approach implicitly assumes the same symmetry for the Nernst and Hall coefficients, which is however not necessarily true. Here we report a large anomalous Nernst effect in antiferromagnetic SrIr0.8Sn0.2O3 that defies the antisymmetric constraint on the anomalous Hall effect imposed by the Onsager reciprocal relation. The observed spontaneous Nernst thermopower quickly reaches the sub-μV/K level below the Néel transition around 250 K, which is comparable with many topological antiferromagnetic semimetals and far excels other magnetic oxides. Our analysis indicates that the coexistence of significant symmetric and antisymmetric contributions plays a key role, pointing to the importance of extracting both contributions and a new pathway to enhanced anomalous Nernst effect for transverse thermoelectrics.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.