Synthesis of water-soluble, highly branched arborescent poly(acrylate)s: a colloid-macromolecule chimera

IF 4.1 2区 化学 Q2 POLYMER SCIENCE
Jonas Quandt, Rustam A. Gumerov, Timon Kratzenberg, Max Hohenschutz, David Kulczycki, Walter Richtering, Igor Potemkin, Cesar Rodriguez-Emmenegger
{"title":"Synthesis of water-soluble, highly branched arborescent poly(acrylate)s: a colloid-macromolecule chimera","authors":"Jonas Quandt, Rustam A. Gumerov, Timon Kratzenberg, Max Hohenschutz, David Kulczycki, Walter Richtering, Igor Potemkin, Cesar Rodriguez-Emmenegger","doi":"10.1039/d5py00104h","DOIUrl":null,"url":null,"abstract":"Arborescent (dendrigraft) polymers are high-molecular-weight dendritic macromolecules with a regular, multilevel branched topology and a high density of functional end groups in their periphery. Their well-defined architecture, devoid of cross-links or loops, imparts a particle-macromolecule duality that becomes particularly pronounced at interfaces. However, the underlying mechanisms governing their interfacial behavior remain largely unexplored. Here, we elucidate how the unique topology dictates the interfacial organization of water-soluble arborescent polymers. Using an iterative grafting-from approach via single-electron transfer living radical polymerization, we synthesized narrowly dispersed polymers with controlled branching and ultra-high molecular weight of 6.2·10⁶ g·mol⁻¹. These polymers transition from spherical rigid particles in solution, to highly flexible, two-dimensional conformations upon interfacial adsorption. At solid interfaces, increasing segment density shifts surface morphologies from quasi-2D discs to fried-egg-like structures, as observed by atomic force microscopy and corroborated by dissipative particle dynamics simulations. At liquid-liquid interfaces, the absence of substrate constraints facilitates complete spreading into uniform 2D discs, driven by the energy gain due to polymer-segment adsorption. Furthermore, we uncover that macromolecular crowding and topological constraints inherent to the arborescent architecture dictate the response to compression of the adsorbed polymer layer, contrasting sharply with the behavior of conventional flexible linear or star polymers. The combination of high interfacial activity, spatially adaptable end groups, and extreme molecular flexibility will enable arborescent polymers to adapt to complex interfaces, acting as versatile platform for multivalent and superselective interactions. These properties open new avenues for designing multivalent nanocarriers and adaptive interfacial materials with cooperative binding effects.","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"33 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5py00104h","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Arborescent (dendrigraft) polymers are high-molecular-weight dendritic macromolecules with a regular, multilevel branched topology and a high density of functional end groups in their periphery. Their well-defined architecture, devoid of cross-links or loops, imparts a particle-macromolecule duality that becomes particularly pronounced at interfaces. However, the underlying mechanisms governing their interfacial behavior remain largely unexplored. Here, we elucidate how the unique topology dictates the interfacial organization of water-soluble arborescent polymers. Using an iterative grafting-from approach via single-electron transfer living radical polymerization, we synthesized narrowly dispersed polymers with controlled branching and ultra-high molecular weight of 6.2·10⁶ g·mol⁻¹. These polymers transition from spherical rigid particles in solution, to highly flexible, two-dimensional conformations upon interfacial adsorption. At solid interfaces, increasing segment density shifts surface morphologies from quasi-2D discs to fried-egg-like structures, as observed by atomic force microscopy and corroborated by dissipative particle dynamics simulations. At liquid-liquid interfaces, the absence of substrate constraints facilitates complete spreading into uniform 2D discs, driven by the energy gain due to polymer-segment adsorption. Furthermore, we uncover that macromolecular crowding and topological constraints inherent to the arborescent architecture dictate the response to compression of the adsorbed polymer layer, contrasting sharply with the behavior of conventional flexible linear or star polymers. The combination of high interfacial activity, spatially adaptable end groups, and extreme molecular flexibility will enable arborescent polymers to adapt to complex interfaces, acting as versatile platform for multivalent and superselective interactions. These properties open new avenues for designing multivalent nanocarriers and adaptive interfacial materials with cooperative binding effects.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer Chemistry
Polymer Chemistry POLYMER SCIENCE-
CiteScore
8.60
自引率
8.70%
发文量
535
审稿时长
1.7 months
期刊介绍: Polymer Chemistry welcomes submissions in all areas of polymer science that have a strong focus on macromolecular chemistry. Manuscripts may cover a broad range of fields, yet no direct application focus is required.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信