Facet-regulated local coordination of oxygen species on MgO for efficient cycloaddition of CO2 with propylene oxide

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL
AIChE Journal Pub Date : 2025-03-25 DOI:10.1002/aic.18826
Ranfei Fu, Juncong Yuan, Yaqian Li, Zeping Wang, Jianlin Cao, Jiaxu Wang, Jiali Dai, Baoyang Zhang, De Chen, Chaohe Yang, Xiang Feng
{"title":"Facet-regulated local coordination of oxygen species on MgO for efficient cycloaddition of CO2 with propylene oxide","authors":"Ranfei Fu, Juncong Yuan, Yaqian Li, Zeping Wang, Jianlin Cao, Jiaxu Wang, Jiali Dai, Baoyang Zhang, De Chen, Chaohe Yang, Xiang Feng","doi":"10.1002/aic.18826","DOIUrl":null,"url":null,"abstract":"Regulating the concentration of low-coordinated oxygen species on certain exposed crystal facets of oxides still remains a challenge. Herein, we developed a facile facet-engineering method to construct regulable ratios of (100), (110), and (111) facets on the MgO by modulating the surface curvature. As revealed by <i>in situ</i> CO<sub>2</sub> diffused reflectance infrared Fourier transform spectroscopy and kinetic studies, it is found that MgO with a high density of active facets (i.e., [111] and [110] facets) exhibits ca. two times higher CO<sub>2</sub> adsorption capacity. Based on the results of the density functional theory calculation, the activation of CO<sub>2</sub> by MgO is enhanced with the increase in low-coordinated oxygen on active facets. Notably, the trapezoidal MgO with high-density active facets shows an increase in propylene epoxide conversion by ca. 33% without halogens, while maintaining a high propylene carbonate selectivity of 97.9%. This work will pave the way for the rational design of high-performance oxide catalysts by the facet-regulating strategy.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"20 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18826","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Regulating the concentration of low-coordinated oxygen species on certain exposed crystal facets of oxides still remains a challenge. Herein, we developed a facile facet-engineering method to construct regulable ratios of (100), (110), and (111) facets on the MgO by modulating the surface curvature. As revealed by in situ CO2 diffused reflectance infrared Fourier transform spectroscopy and kinetic studies, it is found that MgO with a high density of active facets (i.e., [111] and [110] facets) exhibits ca. two times higher CO2 adsorption capacity. Based on the results of the density functional theory calculation, the activation of CO2 by MgO is enhanced with the increase in low-coordinated oxygen on active facets. Notably, the trapezoidal MgO with high-density active facets shows an increase in propylene epoxide conversion by ca. 33% without halogens, while maintaining a high propylene carbonate selectivity of 97.9%. This work will pave the way for the rational design of high-performance oxide catalysts by the facet-regulating strategy.
氧在氧化镁上的面调控局部配位以实现二氧化碳与环氧丙烷的高效环加成
在某些暴露的氧化物晶体表面上调节低配位氧的浓度仍然是一个挑战。在此,我们开发了一种简单的面工程方法,通过调节表面曲率在MgO上构建(100)、(110)和(111)面的可调节比率。原位CO2扩散反射红外傅立叶变换光谱和动力学研究表明,具有高密度活性面(即[111]和[110]面)的MgO具有约两倍的CO2吸附能力。根据密度泛函理论计算结果,MgO对CO2的活化作用随着活性面低配位氧的增加而增强。值得注意的是,具有高密度活性面的梯形MgO在不添加卤素的情况下,环氧丙烷的转化率提高了约33%,同时保持了97.9%的碳酸丙烯酯选择性。这项工作将为通过面调控策略合理设计高性能氧化物催化剂铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信