Synergy of single atoms and sulfur vacancies for advanced polysulfide–iodide redox flow battery

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zhigui Wang, Guolong Lu, Tianran Wei, Ge Meng, Haoxiang Cai, Yanhong Feng, Ke Chu, Jun Luo, Guangzhi Hu, Dingsheng Wang, Xijun Liu
{"title":"Synergy of single atoms and sulfur vacancies for advanced polysulfide–iodide redox flow battery","authors":"Zhigui Wang, Guolong Lu, Tianran Wei, Ge Meng, Haoxiang Cai, Yanhong Feng, Ke Chu, Jun Luo, Guangzhi Hu, Dingsheng Wang, Xijun Liu","doi":"10.1038/s41467-025-58273-9","DOIUrl":null,"url":null,"abstract":"<p>Aqueous redox flow batteries (RFBs) incorporating polysulfide/iodide chemistries have received considerable attention due to their safety, high scalability, and cost-effectiveness. However, the sluggish redox kinetics restricted their output energy efficiency and power density. Here we designed a defective MoS<sub>2</sub> nanosheets supported Co single-atom catalyst that accelerated the transformation of S<sup>2−</sup>/S<sub><i>x</i></sub><sup>2−</sup> and I<sup>−</sup>/I<sub>3</sub><sup>−</sup> redox couples, hence endow the derived polysulfide–iodide RFB with an initial energy efficiency (EE) of 87.9% and an overpotential of 113 mV with an average EE 80.4% at 20 mA cm<sup>−2</sup> and 50% state-of-charge for 50 cycles, and a maximal power density of 95.7 mW cm<sup>−2</sup> for an extended cycling life exceeding 850 cycles at 10 mA cm<sup>−2</sup> and 10% state-of-charge. In situ experimental and theoretical analyses elucidate that Co single atoms induce the generation of abundant sulfur vacancies in MoS<sub>2</sub> via a phase transition process, which synergistically contributed to the enhanced adsorption of reactants and key reaction intermediates and improved charge transfer, resulting in the enhanced RFB performance.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"71 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58273-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous redox flow batteries (RFBs) incorporating polysulfide/iodide chemistries have received considerable attention due to their safety, high scalability, and cost-effectiveness. However, the sluggish redox kinetics restricted their output energy efficiency and power density. Here we designed a defective MoS2 nanosheets supported Co single-atom catalyst that accelerated the transformation of S2−/Sx2− and I/I3 redox couples, hence endow the derived polysulfide–iodide RFB with an initial energy efficiency (EE) of 87.9% and an overpotential of 113 mV with an average EE 80.4% at 20 mA cm−2 and 50% state-of-charge for 50 cycles, and a maximal power density of 95.7 mW cm−2 for an extended cycling life exceeding 850 cycles at 10 mA cm−2 and 10% state-of-charge. In situ experimental and theoretical analyses elucidate that Co single atoms induce the generation of abundant sulfur vacancies in MoS2 via a phase transition process, which synergistically contributed to the enhanced adsorption of reactants and key reaction intermediates and improved charge transfer, resulting in the enhanced RFB performance.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信