Conserved Biological Processes in Partial Cellular Reprogramming: Relevance to Aging and Rejuvenation.

Roberto A Avelar, Daniel Palmer, Anton Y Kulaga, Georg Fuellen
{"title":"Conserved Biological Processes in Partial Cellular Reprogramming: Relevance to Aging and Rejuvenation.","authors":"Roberto A Avelar, Daniel Palmer, Anton Y Kulaga, Georg Fuellen","doi":"10.1016/j.arr.2025.102737","DOIUrl":null,"url":null,"abstract":"<p><p>Partial or transient cellular reprogramming is defined by the limited induction of pluripotency factors without full dedifferentiation of cells to a pluripotent state. Comparing in vitro and in vivo mouse studies, and in vitro studies in humans, supported by visualizations of data interconnections, we show consistent patterns in how such reprogramming modulates key biological processes. Generally, partial reprogramming drives dynamic chromatin remodelling, involving histone modifications that regulate accessibility and facilitate pluripotency gene activation while silencing somatic identity. These changes are accompanied by modifications in stress response programs, such as inflammation, autophagy, and cellular senescence, as well as improved mitochondrial activity and dysregulation of extracellular matrix pathways. We also underscore the challenges in evaluating complex processes like aging and cellular senescence, given the variability in biomarkers used across studies. Overall, we highlight biological processes consistently influenced by reprogramming while noting that some effects are context-dependent, varying according to cell type, species, sex, recovery time, and the reprogramming method employed. These insights inform future research and potential therapeutic applications in aging and regenerative medicine.</p>","PeriodicalId":93862,"journal":{"name":"Ageing research reviews","volume":" ","pages":"102737"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ageing research reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.arr.2025.102737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Partial or transient cellular reprogramming is defined by the limited induction of pluripotency factors without full dedifferentiation of cells to a pluripotent state. Comparing in vitro and in vivo mouse studies, and in vitro studies in humans, supported by visualizations of data interconnections, we show consistent patterns in how such reprogramming modulates key biological processes. Generally, partial reprogramming drives dynamic chromatin remodelling, involving histone modifications that regulate accessibility and facilitate pluripotency gene activation while silencing somatic identity. These changes are accompanied by modifications in stress response programs, such as inflammation, autophagy, and cellular senescence, as well as improved mitochondrial activity and dysregulation of extracellular matrix pathways. We also underscore the challenges in evaluating complex processes like aging and cellular senescence, given the variability in biomarkers used across studies. Overall, we highlight biological processes consistently influenced by reprogramming while noting that some effects are context-dependent, varying according to cell type, species, sex, recovery time, and the reprogramming method employed. These insights inform future research and potential therapeutic applications in aging and regenerative medicine.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信