{"title":"Leveraging the internet of things and optimized deep residual networks for improved foliar disease detection in apple orchards.","authors":"Sameera Kuppam, Swarnalatha Purushotham","doi":"10.1080/0954898X.2025.2472626","DOIUrl":null,"url":null,"abstract":"<p><p>Plant diseases significantly threaten food security by reducing the quantity and quality of agricultural products. This paper presents a deep learning approach for classifying foliar diseases in apple plants using the Tunicate Swarm Sine Cosine Algorithm-based Deep Residual Network (TSSCA-based DRN). Cluster heads in simulated Internet of Things (IoT) networks are selected by Fractional Lion Optimization (FLION), and images are pre-processed with a Gaussian filter and segmented using the DeepJoint model. The TSSCA, combining the Tunicate Swarm Algorithm (TSA) and Sine Cosine Algorithm (SCA), enhances the classifier's effectiveness. Moreover, Plant Pathology 2020 - FGVC7 dataset is used in this work. This dataset is designed for the classification of foliar diseases in apple trees. The TSSCA-based DRN outperforms other methods, achieving 97% accuracy, 94.666% specificity, 96.888% sensitivity, and 0.0442J maximal energy, with significant improvements over existing approaches. Additionally, the proposed model demonstrates superior accuracy, outperforming other methods by 8.97%, 6.58%, 2.07%, 1.71%, 1.14%, 1.07%, 0.93%, and 0.64% over Multidimensional Feature Compensation Residual neural network (MDFC - ResNet), Convolutional Neural Network (CNN), Multi-Context Fusion Network (MCFN), Advanced Segmented Dimension Extraction (ASDE), and DRN, fuzzy deep convolutional neural network (FCDCNN), ResNet9-SE, Capsule Neural Network (CapsNet), IoT-based scrutinizing model, and Multi-Model Fusion Network (MMF-Net).</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-37"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2025.2472626","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Plant diseases significantly threaten food security by reducing the quantity and quality of agricultural products. This paper presents a deep learning approach for classifying foliar diseases in apple plants using the Tunicate Swarm Sine Cosine Algorithm-based Deep Residual Network (TSSCA-based DRN). Cluster heads in simulated Internet of Things (IoT) networks are selected by Fractional Lion Optimization (FLION), and images are pre-processed with a Gaussian filter and segmented using the DeepJoint model. The TSSCA, combining the Tunicate Swarm Algorithm (TSA) and Sine Cosine Algorithm (SCA), enhances the classifier's effectiveness. Moreover, Plant Pathology 2020 - FGVC7 dataset is used in this work. This dataset is designed for the classification of foliar diseases in apple trees. The TSSCA-based DRN outperforms other methods, achieving 97% accuracy, 94.666% specificity, 96.888% sensitivity, and 0.0442J maximal energy, with significant improvements over existing approaches. Additionally, the proposed model demonstrates superior accuracy, outperforming other methods by 8.97%, 6.58%, 2.07%, 1.71%, 1.14%, 1.07%, 0.93%, and 0.64% over Multidimensional Feature Compensation Residual neural network (MDFC - ResNet), Convolutional Neural Network (CNN), Multi-Context Fusion Network (MCFN), Advanced Segmented Dimension Extraction (ASDE), and DRN, fuzzy deep convolutional neural network (FCDCNN), ResNet9-SE, Capsule Neural Network (CapsNet), IoT-based scrutinizing model, and Multi-Model Fusion Network (MMF-Net).
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.