Michael Herger, Christina M Kajba, Megan Buckley, Ana Cunha, Molly Strom, Gregory M Findlay
{"title":"High-throughput screening of human genetic variants by pooled prime editing.","authors":"Michael Herger, Christina M Kajba, Megan Buckley, Ana Cunha, Molly Strom, Gregory M Findlay","doi":"10.1016/j.xgen.2025.100814","DOIUrl":null,"url":null,"abstract":"<p><p>Multiplexed assays of variant effect (MAVEs) enable scalable functional assessment of human genetic variants. However, established MAVEs are limited by exogenous expression of variants or constraints of genome editing. Here, we introduce a pooled prime editing (PE) platform to scalably assay variants in their endogenous context. We first improve efficiency of PE in HAP1 cells, defining optimal prime editing guide RNA (pegRNA) designs and establishing enrichment of edited cells via co-selection. We next demonstrate negative selection screening by testing over 7,500 pegRNAs targeting SMARCB1 and observing depletion of efficiently installed loss-of-function (LoF) variants. We then screen for LoF variants in MLH1 via 6-thioguanine selection, testing 65.3% of all possible SNVs in a 200-bp region including exon 10 and 362 non-coding variants from ClinVar spanning a 60-kb region. The platform's overall accuracy for discriminating pathogenic variants indicates that it will be highly valuable for identifying new variants underlying diverse human phenotypes across large genomic regions.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100814"},"PeriodicalIF":11.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Multiplexed assays of variant effect (MAVEs) enable scalable functional assessment of human genetic variants. However, established MAVEs are limited by exogenous expression of variants or constraints of genome editing. Here, we introduce a pooled prime editing (PE) platform to scalably assay variants in their endogenous context. We first improve efficiency of PE in HAP1 cells, defining optimal prime editing guide RNA (pegRNA) designs and establishing enrichment of edited cells via co-selection. We next demonstrate negative selection screening by testing over 7,500 pegRNAs targeting SMARCB1 and observing depletion of efficiently installed loss-of-function (LoF) variants. We then screen for LoF variants in MLH1 via 6-thioguanine selection, testing 65.3% of all possible SNVs in a 200-bp region including exon 10 and 362 non-coding variants from ClinVar spanning a 60-kb region. The platform's overall accuracy for discriminating pathogenic variants indicates that it will be highly valuable for identifying new variants underlying diverse human phenotypes across large genomic regions.