Gut cannabinoid receptor 1 regulates alcohol binge-induced intestinal permeability.

eGastroenterology Pub Date : 2025-02-12 eCollection Date: 2025-01-01 DOI:10.1136/egastro-2024-100173
Luca Maccioni, Szabolcs Dvorácskó, Grzegorz Godlewski, Resat Cinar, Malliga R Iyer, Bin Gao, George Kunos
{"title":"Gut cannabinoid receptor 1 regulates alcohol binge-induced intestinal permeability.","authors":"Luca Maccioni, Szabolcs Dvorácskó, Grzegorz Godlewski, Resat Cinar, Malliga R Iyer, Bin Gao, George Kunos","doi":"10.1136/egastro-2024-100173","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Endocannabinoids acting via cannabinoid receptor 1 (CB1R) can elicit increased intestinal permeability (a condition also called 'leaky gut'). Alcohol binge can adversely affect digestive functions, including intestinal permeability; however, the underlying mechanisms remain incompletely understood. The current study aimed at examining whether CB1R is involved in alcohol binge-induced intestinal permeability.</p><p><strong>Methods: </strong>We developed intestinal epithelial-specific CB1R knockout (CB1<sup>IEC-/-</sup>) mice and evaluated the <i>in vivo</i> contribution of gut CB1R in alcohol binge-induced intestinal permeability.</p><p><strong>Results: </strong>Alcohol binge increased anandamide levels in the proximal small intestine in association with increased intestinal permeability. Radioligand binding and functional assays confirmed that the genetic deletion of intestinal epithelial CB1R did not alter the density or functionality of CB1R in the brain. Additionally, a peripheral CB1R antagonist, (<i>S</i>)-MRI-1891 (INV-202/monlunabant), exhibited comparable binding affinity to CB1R in brain homogenates. An acute oral administration of (<i>S</i>)-MRI-1891 (3 mg/kg) reduced alcohol binge-induced intestinal permeability in littermate control CB1<sup>f/f</sup> (CB1 floxed/floxed) mice but had no effect in CB1<sup>IEC-/-</sup> mice, underscoring the role of intestinal CB1R in this phenomenon. Mechanistically, we found that alcohol activated intestinal epithelial CB1R-ERK1/2 pathway with subsequent downregulation of tight junction proteins and reduction in villi length. In addition, targeting intestinal CB1R and downstream ERK1/2 was able to reverse this process, with subsequent upregulation of tight junction proteins and increased villi length, thus improving gut barrier function. Despite the effects on intestinal permeability, deletion of intestinal CB1R did not significantly affect metabolic parameters and liver disease.</p><p><strong>Conclusion: </strong>Our findings suggest that alcohol promotes leaky gut via the activation of gut epithelial CB1R and demonstrate that inhibition of CB1R with peripheral-restricted selective CB1R antagonists can prevent alcohol binge-induced intestinal permeability.</p>","PeriodicalId":72879,"journal":{"name":"eGastroenterology","volume":"3 1","pages":"e100173"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11927431/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eGastroenterology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/egastro-2024-100173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Endocannabinoids acting via cannabinoid receptor 1 (CB1R) can elicit increased intestinal permeability (a condition also called 'leaky gut'). Alcohol binge can adversely affect digestive functions, including intestinal permeability; however, the underlying mechanisms remain incompletely understood. The current study aimed at examining whether CB1R is involved in alcohol binge-induced intestinal permeability.

Methods: We developed intestinal epithelial-specific CB1R knockout (CB1IEC-/-) mice and evaluated the in vivo contribution of gut CB1R in alcohol binge-induced intestinal permeability.

Results: Alcohol binge increased anandamide levels in the proximal small intestine in association with increased intestinal permeability. Radioligand binding and functional assays confirmed that the genetic deletion of intestinal epithelial CB1R did not alter the density or functionality of CB1R in the brain. Additionally, a peripheral CB1R antagonist, (S)-MRI-1891 (INV-202/monlunabant), exhibited comparable binding affinity to CB1R in brain homogenates. An acute oral administration of (S)-MRI-1891 (3 mg/kg) reduced alcohol binge-induced intestinal permeability in littermate control CB1f/f (CB1 floxed/floxed) mice but had no effect in CB1IEC-/- mice, underscoring the role of intestinal CB1R in this phenomenon. Mechanistically, we found that alcohol activated intestinal epithelial CB1R-ERK1/2 pathway with subsequent downregulation of tight junction proteins and reduction in villi length. In addition, targeting intestinal CB1R and downstream ERK1/2 was able to reverse this process, with subsequent upregulation of tight junction proteins and increased villi length, thus improving gut barrier function. Despite the effects on intestinal permeability, deletion of intestinal CB1R did not significantly affect metabolic parameters and liver disease.

Conclusion: Our findings suggest that alcohol promotes leaky gut via the activation of gut epithelial CB1R and demonstrate that inhibition of CB1R with peripheral-restricted selective CB1R antagonists can prevent alcohol binge-induced intestinal permeability.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信