Sequence analysis of the hepatitis D virus across genotypes reveals highly conserved regions amidst evidence of recombination.

IF 5.5 2区 医学 Q1 VIROLOGY
Virus Evolution Pub Date : 2025-02-27 eCollection Date: 2025-01-01 DOI:10.1093/ve/veaf012
Shruti Chowdhury, Carina Jacobsen, Daniel P Depledge, Heiner Wedemeyer, Lisa Sandmann, Helenie Kefalakes
{"title":"Sequence analysis of the hepatitis D virus across genotypes reveals highly conserved regions amidst evidence of recombination.","authors":"Shruti Chowdhury, Carina Jacobsen, Daniel P Depledge, Heiner Wedemeyer, Lisa Sandmann, Helenie Kefalakes","doi":"10.1093/ve/veaf012","DOIUrl":null,"url":null,"abstract":"<p><p>Sequence diversity of the hepatitis D virus (HDV) may impact viral clearance, contributing to the development of chronic infection. T-Cell-induced selection pressure and viral recombination can induce diversity throughout the viral genome including coding and noncoding regions, with the former potentially impacting viral pathogenicity and the latter exerting regulatory functions. Here, we aim to assess sequence variations of the HDV genome within and across HDV genotypes. Sequences from 721 complete HDV genomes and 793 large hepatitis D antigen (L-HDAg) regions belonging to all eight genotypes and published through December 2023 were compiled. Most retrieved sequences belonged to Genotype 1, whereas for Genotype 8, the fewest sequences were available. Alignments were conducted using Clustal Omega and Multiple Alignment using Fast Fourier Transform. Phylogeny was analysed using SplitsTree4, and recombination sites were inspected using Recombination Detection Program 4. All reported sequences were aligned per genotype to retrieve consensus and reference sequences based on the highest similarity to consensus per genotype. L-HDAg alignments of the proposed reference sequences showed that not only conserved but also highly variable positions exist, which was also reflected in the epitope variability across HDV genotypes. Importantly, <i>in silico</i> binding prediction analysis showed that CD8<sup>+</sup> T-cell epitopes mapped for Genotype 1 may not bind to major histocompatibility complex class I when examining their corresponding sequence in other genotypes. Phylogenetic analysis showed evidence of recombinant genomes within each individual genotype as well as between two different HDV genotypes, enabling the identification of common recombination sites. The identification of conserved regions within the L-HDAg allows their exploitation for genotype-independent diagnostic and therapeutic strategies, while the harmonized use of the proposed reference sequences may facilitate efforts to achieve HDV control.</p>","PeriodicalId":56026,"journal":{"name":"Virus Evolution","volume":"11 1","pages":"veaf012"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11927530/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus Evolution","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ve/veaf012","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sequence diversity of the hepatitis D virus (HDV) may impact viral clearance, contributing to the development of chronic infection. T-Cell-induced selection pressure and viral recombination can induce diversity throughout the viral genome including coding and noncoding regions, with the former potentially impacting viral pathogenicity and the latter exerting regulatory functions. Here, we aim to assess sequence variations of the HDV genome within and across HDV genotypes. Sequences from 721 complete HDV genomes and 793 large hepatitis D antigen (L-HDAg) regions belonging to all eight genotypes and published through December 2023 were compiled. Most retrieved sequences belonged to Genotype 1, whereas for Genotype 8, the fewest sequences were available. Alignments were conducted using Clustal Omega and Multiple Alignment using Fast Fourier Transform. Phylogeny was analysed using SplitsTree4, and recombination sites were inspected using Recombination Detection Program 4. All reported sequences were aligned per genotype to retrieve consensus and reference sequences based on the highest similarity to consensus per genotype. L-HDAg alignments of the proposed reference sequences showed that not only conserved but also highly variable positions exist, which was also reflected in the epitope variability across HDV genotypes. Importantly, in silico binding prediction analysis showed that CD8+ T-cell epitopes mapped for Genotype 1 may not bind to major histocompatibility complex class I when examining their corresponding sequence in other genotypes. Phylogenetic analysis showed evidence of recombinant genomes within each individual genotype as well as between two different HDV genotypes, enabling the identification of common recombination sites. The identification of conserved regions within the L-HDAg allows their exploitation for genotype-independent diagnostic and therapeutic strategies, while the harmonized use of the proposed reference sequences may facilitate efforts to achieve HDV control.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Virus Evolution
Virus Evolution Immunology and Microbiology-Microbiology
CiteScore
10.50
自引率
5.70%
发文量
108
审稿时长
14 weeks
期刊介绍: Virus Evolution is a new Open Access journal focusing on the long-term evolution of viruses, viruses as a model system for studying evolutionary processes, viral molecular epidemiology and environmental virology. The aim of the journal is to provide a forum for original research papers, reviews, commentaries and a venue for in-depth discussion on the topics relevant to virus evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信