Enhancing Schizophrenia Diagnosis Through Multi-View EEG Analysis: Integrating Raw Signals and Spectrograms in a Deep Learning Framework.

Hasan Zan
{"title":"Enhancing Schizophrenia Diagnosis Through Multi-View EEG Analysis: Integrating Raw Signals and Spectrograms in a Deep Learning Framework.","authors":"Hasan Zan","doi":"10.1177/15500594251328068","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> Schizophrenia is a chronic mental disorder marked by symptoms such as hallucinations, delusions, and cognitive impairments, which profoundly affect individuals' lives. Early detection is crucial for improving treatment outcomes, but the diagnostic process remains complex due to the disorder's multifaceted nature. In recent years, EEG data have been increasingly investigated to detect neural patterns linked to schizophrenia. <b>Methods:</b> This study presents a deep learning framework that integrates both raw multi-channel EEG signals and their spectrograms. Our two-branch model processes these complementary data views to capture both temporal dynamics and frequency-specific features while employing depth-wise convolution to efficiently combine spatial dependencies across EEG channels. <b>Results:</b> The model was evaluated on two datasets, consisting of 84 and 28 subjects, achieving classification accuracies of 0.985 and 0.994, respectively. These results highlight the effectiveness of combining raw EEG signals with their time-frequency representations for precise and automated schizophrenia detection. Additionally, an ablation study assessed the contributions of different architectural components. <b>Conclusions:</b> The approach outperformed existing methods in the literature, underscoring the value of utilizing multi-view EEG data in schizophrenia detection. These promising results suggest that our framework could contribute to more effective diagnostic tools in clinical practice.</p>","PeriodicalId":93940,"journal":{"name":"Clinical EEG and neuroscience","volume":" ","pages":"15500594251328068"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical EEG and neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15500594251328068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Schizophrenia is a chronic mental disorder marked by symptoms such as hallucinations, delusions, and cognitive impairments, which profoundly affect individuals' lives. Early detection is crucial for improving treatment outcomes, but the diagnostic process remains complex due to the disorder's multifaceted nature. In recent years, EEG data have been increasingly investigated to detect neural patterns linked to schizophrenia. Methods: This study presents a deep learning framework that integrates both raw multi-channel EEG signals and their spectrograms. Our two-branch model processes these complementary data views to capture both temporal dynamics and frequency-specific features while employing depth-wise convolution to efficiently combine spatial dependencies across EEG channels. Results: The model was evaluated on two datasets, consisting of 84 and 28 subjects, achieving classification accuracies of 0.985 and 0.994, respectively. These results highlight the effectiveness of combining raw EEG signals with their time-frequency representations for precise and automated schizophrenia detection. Additionally, an ablation study assessed the contributions of different architectural components. Conclusions: The approach outperformed existing methods in the literature, underscoring the value of utilizing multi-view EEG data in schizophrenia detection. These promising results suggest that our framework could contribute to more effective diagnostic tools in clinical practice.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信