Investigating the Shortcomings of the Flow Convergence Method for Quantification of Mitral Regurgitation in a Pulsatile In-Vitro Environment and with Computational Fluid Dynamics.

IF 1.6 4区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS
Robin Leister, Roger Karl, Lubov Stroh, Derliz Mereles, Matthias Eden, Luis Neff, Raffaele de Simone, Gabriele Romano, Jochen Kriegseis, Matthias Karck, Christoph Lichtenstern, Norbert Frey, Bettina Frohnapfel, Alexander Stroh, Sandy Engelhardt
{"title":"Investigating the Shortcomings of the Flow Convergence Method for Quantification of Mitral Regurgitation in a Pulsatile In-Vitro Environment and with Computational Fluid Dynamics.","authors":"Robin Leister, Roger Karl, Lubov Stroh, Derliz Mereles, Matthias Eden, Luis Neff, Raffaele de Simone, Gabriele Romano, Jochen Kriegseis, Matthias Karck, Christoph Lichtenstern, Norbert Frey, Bettina Frohnapfel, Alexander Stroh, Sandy Engelhardt","doi":"10.1007/s13239-024-00763-w","DOIUrl":null,"url":null,"abstract":"<p><p>The flow convergence method includes calculation of the proximal isovelocity surface area (PISA) and is widely used to classify mitral regurgitation (MR) with echocardiography. It constitutes a primary decision factor for determination of treatment and should therefore be a robust quantification method. However, it is known for its tendency to underestimate MR and its dependence on user expertise. The present work systematically compares different pulsatile flow profiles arising from different regurgitation orifices using transesophageal echocardiographic (TEE) probe and particle image velocimetry (PIV) as a reference in an in-vitro environment. It is found that the inter-observer variability using echocardiography is small compared to the systematic underestimation of the regurgitation volume for large orifice areas (up to 52%) where a violation of the flow convergence method assumptions occurs. From a flow perspective, a starting vortex was found as a dominant flow pattern in the regurgant jet for all orifice shapes and sizes. A series of simplified computational fluid dynamics (CFD) simulations indicate that selecting a suboptimal aliasing velocity during echocardiography measurements might be a primary source of potential underestimation in MR characterization via the PISA-based method, reaching up to 40%. In this study, it has been noted in clinical observations that physicians often select an aliasing velocity higher than necessary for optimal estimation in diagnostic procedures.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":"16 2","pages":"155-170"},"PeriodicalIF":1.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11933158/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13239-024-00763-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The flow convergence method includes calculation of the proximal isovelocity surface area (PISA) and is widely used to classify mitral regurgitation (MR) with echocardiography. It constitutes a primary decision factor for determination of treatment and should therefore be a robust quantification method. However, it is known for its tendency to underestimate MR and its dependence on user expertise. The present work systematically compares different pulsatile flow profiles arising from different regurgitation orifices using transesophageal echocardiographic (TEE) probe and particle image velocimetry (PIV) as a reference in an in-vitro environment. It is found that the inter-observer variability using echocardiography is small compared to the systematic underestimation of the regurgitation volume for large orifice areas (up to 52%) where a violation of the flow convergence method assumptions occurs. From a flow perspective, a starting vortex was found as a dominant flow pattern in the regurgant jet for all orifice shapes and sizes. A series of simplified computational fluid dynamics (CFD) simulations indicate that selecting a suboptimal aliasing velocity during echocardiography measurements might be a primary source of potential underestimation in MR characterization via the PISA-based method, reaching up to 40%. In this study, it has been noted in clinical observations that physicians often select an aliasing velocity higher than necessary for optimal estimation in diagnostic procedures.

用计算流体力学研究体外脉动环境下二尖瓣返流定量流动收敛法的缺陷。
血流收敛方法包括计算近端等速表面积(PISA),广泛用于超声心动图二尖瓣反流(MR)的分类。它构成了决定治疗的主要决定因素,因此应该是一种可靠的量化方法。然而,众所周知,它倾向于低估MR及其对用户专业知识的依赖。本研究在体外环境下,以经食管超声心动图(TEE)探针和颗粒图像测速(PIV)作为参考,系统地比较了不同反流孔产生的不同脉冲流谱。研究发现,与系统低估大孔口区域的返流量(高达52%)相比,使用超声心动图的观察者间变异性很小,这违反了流量收敛方法的假设。从流动的角度来看,在所有孔口形状和尺寸的反流射流中,起始涡都是主要的流动形式。一系列简化的计算流体动力学(CFD)模拟表明,在超声心动图测量期间选择次优混叠速度可能是通过基于pisas的方法进行MR表征时潜在低估的主要原因,低估幅度高达40%。在这项研究中,在临床观察中已经注意到,在诊断过程中,医生经常选择比最佳估计所需的更高的混叠速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cardiovascular Engineering and Technology
Cardiovascular Engineering and Technology Engineering-Biomedical Engineering
CiteScore
4.00
自引率
0.00%
发文量
51
期刊介绍: Cardiovascular Engineering and Technology is a journal publishing the spectrum of basic to translational research in all aspects of cardiovascular physiology and medical treatment. It is the forum for academic and industrial investigators to disseminate research that utilizes engineering principles and methods to advance fundamental knowledge and technological solutions related to the cardiovascular system. Manuscripts spanning from subcellular to systems level topics are invited, including but not limited to implantable medical devices, hemodynamics and tissue biomechanics, functional imaging, surgical devices, electrophysiology, tissue engineering and regenerative medicine, diagnostic instruments, transport and delivery of biologics, and sensors. In addition to manuscripts describing the original publication of research, manuscripts reviewing developments in these topics or their state-of-art are also invited.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信