Svante Resjö, Iqra, Nam P Kieu, Muhammad Awais Zahid, Marit Lenman, Björn Andersson, Erik Andreasson
{"title":"Late blight field resistance in potatoes carrying <i>Solanum americanum</i> resistance genes (Rpi-amr3 and Rpi-amr1).","authors":"Svante Resjö, Iqra, Nam P Kieu, Muhammad Awais Zahid, Marit Lenman, Björn Andersson, Erik Andreasson","doi":"10.1080/21645698.2025.2479913","DOIUrl":null,"url":null,"abstract":"<p><p>Potato (<i>Solanum tuberosum</i> L.) is an important global crop, but its production is severely impacted by late blight, caused by the pathogen <i>Phytophthora infestans</i>. The economic burden of this disease is significant, and current control strategies rely mainly on fungicides, which face increasing regulatory and environmental constraints. To address this challenge, potatoes with resistance genes from wild potato relatives offer a promising solution. This study evaluated field resistance to late blight in potato lines (Maris Piper) containing the <i>Solanum americanum</i> resistance genes <i>Rpi-amr3</i> and <i>Rpi-amr1</i> across three years (2018-2020) in Sweden. Field trials were conducted under natural infection conditions to assess disease resistance. Results showed that the transgenic lines conferred strong resistance to late blight compared to the susceptible control. However, slight late blight symptoms were observed in the transgenic lines. These results highlight the effectiveness of <i>S. americanum</i> resistance genes in providing strong resistance, and emphasize the potential of stacking multiple R genes, including these genes to maintain efficacy. This research supports the development of resistant potato varieties as a sustainable alternative to chemical control, promoting food security and environmentally friendly agriculture.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"16 1","pages":"263-271"},"PeriodicalIF":4.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934159/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21645698.2025.2479913","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Potato (Solanum tuberosum L.) is an important global crop, but its production is severely impacted by late blight, caused by the pathogen Phytophthora infestans. The economic burden of this disease is significant, and current control strategies rely mainly on fungicides, which face increasing regulatory and environmental constraints. To address this challenge, potatoes with resistance genes from wild potato relatives offer a promising solution. This study evaluated field resistance to late blight in potato lines (Maris Piper) containing the Solanum americanum resistance genes Rpi-amr3 and Rpi-amr1 across three years (2018-2020) in Sweden. Field trials were conducted under natural infection conditions to assess disease resistance. Results showed that the transgenic lines conferred strong resistance to late blight compared to the susceptible control. However, slight late blight symptoms were observed in the transgenic lines. These results highlight the effectiveness of S. americanum resistance genes in providing strong resistance, and emphasize the potential of stacking multiple R genes, including these genes to maintain efficacy. This research supports the development of resistant potato varieties as a sustainable alternative to chemical control, promoting food security and environmentally friendly agriculture.
期刊介绍:
GM Crops & Food - Biotechnology in Agriculture and the Food Chain aims to publish high quality research papers, reviews, and commentaries on a wide range of topics involving genetically modified (GM) crops in agriculture and genetically modified food. The journal provides a platform for research papers addressing fundamental questions in the development, testing, and application of transgenic crops. The journal further covers topics relating to socio-economic issues, commercialization, trade and societal issues. GM Crops & Food aims to provide an international forum on all issues related to GM crops, especially toward meaningful communication between scientists and policy-makers.
GM Crops & Food will publish relevant and high-impact original research with a special focus on novelty-driven studies with the potential for application. The journal also publishes authoritative review articles on current research and policy initiatives, and commentary on broad perspectives regarding genetically modified crops. The journal serves a wide readership including scientists, breeders, and policy-makers, as well as a wider community of readers (educators, policy makers, scholars, science writers and students) interested in agriculture, medicine, biotechnology, investment, and technology transfer.
Topics covered include, but are not limited to:
• Production and analysis of transgenic crops
• Gene insertion studies
• Gene silencing
• Factors affecting gene expression
• Post-translational analysis
• Molecular farming
• Field trial analysis
• Commercialization of modified crops
• Safety and regulatory affairs
BIOLOGICAL SCIENCE AND TECHNOLOGY
• Biofuels
• Data from field trials
• Development of transformation technology
• Elimination of pollutants (Bioremediation)
• Gene silencing mechanisms
• Genome Editing
• Herbicide resistance
• Molecular farming
• Pest resistance
• Plant reproduction (e.g., male sterility, hybrid breeding, apomixis)
• Plants with altered composition
• Tolerance to abiotic stress
• Transgenesis in agriculture
• Biofortification and nutrients improvement
• Genomic, proteomic and bioinformatics methods used for developing GM cops
ECONOMIC, POLITICAL AND SOCIAL ISSUES
• Commercialization
• Consumer attitudes
• International bodies
• National and local government policies
• Public perception, intellectual property, education, (bio)ethical issues
• Regulation, environmental impact and containment
• Socio-economic impact
• Food safety and security
• Risk assessments