Localist neural plasticity identified by mutual information.

IF 1.5 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Gabriele Scheler, Martin L Schumann, Johann Schumann
{"title":"Localist neural plasticity identified by mutual information.","authors":"Gabriele Scheler, Martin L Schumann, Johann Schumann","doi":"10.1007/s10827-025-00901-w","DOIUrl":null,"url":null,"abstract":"<p><p>We present a model of pattern memory and retrieval with novel, technically useful and biologically realistic properties. Specifically, we enter n variations of k pattern classes (n*k patterns) onto a cortex-like balanced inhibitory-excitatory network with heterogeneous neurons, and let the pattern spread within the recurrent network. We show that we can identify high mutual-information (MI) neurons as major information-bearing elements within each pattern representation. We employ a simple one-shot adaptive (learning) process focusing on high MI neurons and inhibition. Such 'localist plasticity' has high efficiency, because it requires only few adaptations for each pattern. Specifically, we store k=10 patterns of size s=400 in a 1000/1200 neuron network. We stimulate high MI neurons and in this way recall patterns, such that the whole network represents this pattern. We assess the quality of the representation (a) before learning, when entering the pattern into a naive network, (b) after learning, on the adapted network, and (c) after recall by stimulation. The recalled patterns could be easily recognized by a trained classifier. The recalled pattern 'unfolds' over the recurrent network with high similarity to the original input pattern. We discuss the distribution of neuron properties in the network, and find that an initial Gaussian distribution changes into a more heavy-tailed, lognormal distribution during the adaptation process. The remarkable result is that we are able to achieve reliable pattern recall by stimulating only high information neurons. This work provides a biologically-inspired model of cortical memory and may have interesting technical applications.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10827-025-00901-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We present a model of pattern memory and retrieval with novel, technically useful and biologically realistic properties. Specifically, we enter n variations of k pattern classes (n*k patterns) onto a cortex-like balanced inhibitory-excitatory network with heterogeneous neurons, and let the pattern spread within the recurrent network. We show that we can identify high mutual-information (MI) neurons as major information-bearing elements within each pattern representation. We employ a simple one-shot adaptive (learning) process focusing on high MI neurons and inhibition. Such 'localist plasticity' has high efficiency, because it requires only few adaptations for each pattern. Specifically, we store k=10 patterns of size s=400 in a 1000/1200 neuron network. We stimulate high MI neurons and in this way recall patterns, such that the whole network represents this pattern. We assess the quality of the representation (a) before learning, when entering the pattern into a naive network, (b) after learning, on the adapted network, and (c) after recall by stimulation. The recalled patterns could be easily recognized by a trained classifier. The recalled pattern 'unfolds' over the recurrent network with high similarity to the original input pattern. We discuss the distribution of neuron properties in the network, and find that an initial Gaussian distribution changes into a more heavy-tailed, lognormal distribution during the adaptation process. The remarkable result is that we are able to achieve reliable pattern recall by stimulating only high information neurons. This work provides a biologically-inspired model of cortical memory and may have interesting technical applications.

通过互信息识别局部神经可塑性
我们提出了一种模式记忆和检索模型,具有新颖,技术上有用和生物学上现实的特性。具体来说,我们将k种模式类别(n*k种模式)的n种变化输入到具有异质神经元的皮质样平衡抑制-兴奋网络中,并让模式在循环网络中传播。我们表明,我们可以识别高互信息(MI)神经元作为每个模式表示中的主要信息承载元素。我们采用了一个简单的单次自适应(学习)过程,专注于高MI神经元和抑制。这种“局部可塑性”具有很高的效率,因为它只需要对每种模式进行很少的调整。具体来说,我们在1000/1200神经元网络中存储k=10个大小为s=400的模式。我们刺激高MI神经元,以这种方式回忆模式,这样整个网络就代表了这个模式。我们评估表征的质量(a)在学习之前,在将模式输入幼稚网络时,(b)在学习之后,在适应网络上,以及(c)在通过刺激回忆之后。被召回的模式可以很容易地被训练好的分类器识别。回忆的模式在循环网络中“展开”,与原始输入模式具有很高的相似性。我们讨论了神经网络中神经元性质的分布,发现在适应过程中,初始的高斯分布转变为更重尾的对数正态分布。值得注意的结果是,我们能够通过刺激高信息神经元来实现可靠的模式回忆。这项工作提供了一种受生物学启发的皮层记忆模型,并可能具有有趣的技术应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
8.30%
发文量
32
审稿时长
3 months
期刊介绍: The Journal of Computational Neuroscience provides a forum for papers that fit the interface between computational and experimental work in the neurosciences. The Journal of Computational Neuroscience publishes full length original papers, rapid communications and review articles describing theoretical and experimental work relevant to computations in the brain and nervous system. Papers that combine theoretical and experimental work are especially encouraged. Primarily theoretical papers should deal with issues of obvious relevance to biological nervous systems. Experimental papers should have implications for the computational function of the nervous system, and may report results using any of a variety of approaches including anatomy, electrophysiology, biophysics, imaging, and molecular biology. Papers investigating the physiological mechanisms underlying pathologies of the nervous system, or papers that report novel technologies of interest to researchers in computational neuroscience, including advances in neural data analysis methods yielding insights into the function of the nervous system, are also welcomed (in this case, methodological papers should include an application of the new method, exemplifying the insights that it yields).It is anticipated that all levels of analysis from cognitive to cellular will be represented in the Journal of Computational Neuroscience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信