{"title":"4D fabrication of shape-changing systems for tissue engineering: state of the art and perspectives.","authors":"Lorenzo Bonetti, Giulia Scalet","doi":"10.1007/s40964-024-00743-5","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, four-dimensional (4D) fabrication has emerged as a powerful technology capable of revolutionizing the field of tissue engineering. This technology represents a shift in perspective from traditional tissue engineering approaches, which generally rely on static-or passive-structures (e.g., scaffolds, constructs) unable of adapting to changes in biological environments. In contrast, 4D fabrication offers the unprecedented possibility of fabricating complex designs with spatiotemporal control over structure and function in response to environment stimuli, thus mimicking biological processes. In this review, an overview of the state of the art of 4D fabrication technology for the obtainment of cellularized constructs is presented, with a focus on shape-changing soft materials. First, the approaches to obtain cellularized constructs are introduced, also describing conventional and non-conventional fabrication techniques with their relative advantages and limitations. Next, the main families of shape-changing soft materials, namely shape-memory polymers and shape-memory hydrogels are discussed and their use in 4D fabrication in the field of tissue engineering is described. Ultimately, current challenges and proposed solutions are outlined, and valuable insights into future research directions of 4D fabrication for tissue engineering are provided to disclose its full potential.</p>","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"10 4","pages":"1913-1943"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926060/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Additive Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40964-024-00743-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, four-dimensional (4D) fabrication has emerged as a powerful technology capable of revolutionizing the field of tissue engineering. This technology represents a shift in perspective from traditional tissue engineering approaches, which generally rely on static-or passive-structures (e.g., scaffolds, constructs) unable of adapting to changes in biological environments. In contrast, 4D fabrication offers the unprecedented possibility of fabricating complex designs with spatiotemporal control over structure and function in response to environment stimuli, thus mimicking biological processes. In this review, an overview of the state of the art of 4D fabrication technology for the obtainment of cellularized constructs is presented, with a focus on shape-changing soft materials. First, the approaches to obtain cellularized constructs are introduced, also describing conventional and non-conventional fabrication techniques with their relative advantages and limitations. Next, the main families of shape-changing soft materials, namely shape-memory polymers and shape-memory hydrogels are discussed and their use in 4D fabrication in the field of tissue engineering is described. Ultimately, current challenges and proposed solutions are outlined, and valuable insights into future research directions of 4D fabrication for tissue engineering are provided to disclose its full potential.
期刊介绍:
Progress in Additive Manufacturing promotes highly scored scientific investigations from academia, government and industry R&D activities. The journal publishes the advances in the processing of different kinds of materials by well-established and new Additive Manufacturing (AM) technologies. Manuscripts showing the progress in the processing and development of multi-materials by hybrid additive manufacturing or by the combination of additive and subtractive manufacturing technologies are also welcome. Progress in Additive Manufacturing serves as a platform for scientists to contribute full papers as well as review articles and short communications analyzing aspects ranging from data processing (new design tools, data formats), simulation, materials (ceramic, metals, polymers, composites, biomaterials and multi-materials), microstructure development, new AM processes or combination of processes (e.g. additive and subtractive, hybrid, multi-steps), parameter and process optimization, new testing methods for AM parts and process monitoring. The journal welcomes manuscripts in several AM topics, including: • Design tools and data format • Material aspects and new developments • Multi-material and composites • Microstructure evolution of AM parts • Optimization of existing processes • Development of new techniques and processing strategies (combination subtractive and additive methods, hybrid processes) • Integration with conventional manufacturing techniques • Innovative applications of AM parts (for tooling, high temperature or high performance applications) • Process monitoring and non-destructive testing of AM parts • Speed-up strategies for AM processes • New test methods and special features of AM parts