Blueprint for Constructing an AI-Based Patient Simulation to Enhance the Integration of Foundational and Clinical Sciences in Didactic Immunology in a US Doctor of Pharmacy Program: A Step-by-Step Prompt Engineering and Coding Toolkit.
{"title":"Blueprint for Constructing an AI-Based Patient Simulation to Enhance the Integration of Foundational and Clinical Sciences in Didactic Immunology in a US Doctor of Pharmacy Program: A Step-by-Step Prompt Engineering and Coding Toolkit.","authors":"Ashim Malhotra, Micah Buller, Kunal Modi, Karim Pajazetovic, Dayanjan S Wijesinghe","doi":"10.3390/pharmacy13020036","DOIUrl":null,"url":null,"abstract":"<p><p>While pharmacy education successfully employs various methodologies including case-based learning and simulated patient interactions, providing consistent, individualized guidance at scale remains challenging in team-based learning environments. Artificial intelligence (AI) offers potential solutions through automated facilitation, but its possible utility in pharmacy education remains unexplored. We developed and evaluated an AI-guided patient case discussion simulation to enhance learners' ability to integrate foundational science knowledge with clinical decision-making in a didactic immunology course in a US PharmD program. We utilized a large language model programmed with specific educational protocols and rubrics. Here, we present the step-by-step prompt engineering protocol as a toolkit. The system was structured around three core components in an immunology team-based learning activity: (1) symptomatology analysis, (2) laboratory test interpretation, and (3) pharmacist role definition and PPCP. Performance evaluation was conducted using a comprehensive rubric assessing multiple clinical reasoning and pharmaceutical knowledge domains. The standardized evaluation rubric showed reliable assessment across key competencies including condition identification (30% weighting), laboratory test interpretation (40% weighting), and pharmacist role understanding (30% weighting). Our AI patient simulator offers a scalable solution for standardizing clinical case discussions while maintaining individualized learning experiences.</p>","PeriodicalId":30544,"journal":{"name":"Pharmacy","volume":"13 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932309/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/pharmacy13020036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
While pharmacy education successfully employs various methodologies including case-based learning and simulated patient interactions, providing consistent, individualized guidance at scale remains challenging in team-based learning environments. Artificial intelligence (AI) offers potential solutions through automated facilitation, but its possible utility in pharmacy education remains unexplored. We developed and evaluated an AI-guided patient case discussion simulation to enhance learners' ability to integrate foundational science knowledge with clinical decision-making in a didactic immunology course in a US PharmD program. We utilized a large language model programmed with specific educational protocols and rubrics. Here, we present the step-by-step prompt engineering protocol as a toolkit. The system was structured around three core components in an immunology team-based learning activity: (1) symptomatology analysis, (2) laboratory test interpretation, and (3) pharmacist role definition and PPCP. Performance evaluation was conducted using a comprehensive rubric assessing multiple clinical reasoning and pharmaceutical knowledge domains. The standardized evaluation rubric showed reliable assessment across key competencies including condition identification (30% weighting), laboratory test interpretation (40% weighting), and pharmacist role understanding (30% weighting). Our AI patient simulator offers a scalable solution for standardizing clinical case discussions while maintaining individualized learning experiences.