A Stable mRNA-Based Novel Multi-Epitope Vaccine Designs Against Infectious Heartland Virus by Integrated Immunoinformatics and Reverse Vaccinology Approaches.
{"title":"A Stable mRNA-Based Novel Multi-Epitope Vaccine Designs Against Infectious Heartland Virus by Integrated Immunoinformatics and Reverse Vaccinology Approaches.","authors":"Awais Ali, Syed Luqman Ali","doi":"10.1089/vim.2025.0004","DOIUrl":null,"url":null,"abstract":"<p><p>The Heartland virus (HRTV) is a tick-borne human pathogenic phlebovirus that primarily causes leukopenia and thrombocytopenia. It is transmitted by <i>Amblyomma americanum</i> type of tick, that is, notable for their aggressive biting behavior, affinity for human hosts, and high prevalence. Developing vaccines or immunizations against HRTV is gaining importance as a public-health preventive strategy. The current study was planned to prioritize a multi-epitope stable mRNA vaccine model against HRTV from lead B-cell and T-cell epitopes (with IC<sub>50</sub> < 100 nM) of HRTV proteome following advanced immunoinformatics approaches. Model constructs were designed by linking the most potent, nonallergenic epitopes along with incorporation of human ribosomal protein adjuvant for immune response enhancement. The immunogenic potential of the coding vaccine molecule was examined via molecular docking against toll-like receptors immune receptors followed by normal mode analysis and molecular dynamics simulations-based energy minimization, molecular stability, and flexibility assessments. A robust, stable circular mRNA precursor of multi-epitopes vaccine model was designed by incorporating the Kozak consensus sequence, a start codon, and essential elements such as MHC class I trafficking domain (MITD), tPA, Goblin 5' and 3' Untranslated Region (UTRs), and a poly (A) tail. This strategic amalgamation ensures elevated immunogenicity and predicts a promising circular mRNA vaccine model against HRTV. The immune simulation predicted that the designed model vaccine is capable to elicit cell-mediated and humoral immune responses. The predicted circular mRNA vaccine precursor model is promising against HRTV to examine experimentally for its immunogenicity and safety features.</p>","PeriodicalId":23665,"journal":{"name":"Viral immunology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viral immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/vim.2025.0004","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Heartland virus (HRTV) is a tick-borne human pathogenic phlebovirus that primarily causes leukopenia and thrombocytopenia. It is transmitted by Amblyomma americanum type of tick, that is, notable for their aggressive biting behavior, affinity for human hosts, and high prevalence. Developing vaccines or immunizations against HRTV is gaining importance as a public-health preventive strategy. The current study was planned to prioritize a multi-epitope stable mRNA vaccine model against HRTV from lead B-cell and T-cell epitopes (with IC50 < 100 nM) of HRTV proteome following advanced immunoinformatics approaches. Model constructs were designed by linking the most potent, nonallergenic epitopes along with incorporation of human ribosomal protein adjuvant for immune response enhancement. The immunogenic potential of the coding vaccine molecule was examined via molecular docking against toll-like receptors immune receptors followed by normal mode analysis and molecular dynamics simulations-based energy minimization, molecular stability, and flexibility assessments. A robust, stable circular mRNA precursor of multi-epitopes vaccine model was designed by incorporating the Kozak consensus sequence, a start codon, and essential elements such as MHC class I trafficking domain (MITD), tPA, Goblin 5' and 3' Untranslated Region (UTRs), and a poly (A) tail. This strategic amalgamation ensures elevated immunogenicity and predicts a promising circular mRNA vaccine model against HRTV. The immune simulation predicted that the designed model vaccine is capable to elicit cell-mediated and humoral immune responses. The predicted circular mRNA vaccine precursor model is promising against HRTV to examine experimentally for its immunogenicity and safety features.
期刊介绍:
Viral Immunology delivers cutting-edge peer-reviewed research on rare, emerging, and under-studied viruses, with special focus on analyzing mutual relationships between external viruses and internal immunity. Original research, reviews, and commentaries on relevant viruses are presented in clinical, translational, and basic science articles for researchers in multiple disciplines.
Viral Immunology coverage includes:
Human and animal viral immunology
Research and development of viral vaccines, including field trials
Immunological characterization of viral components
Virus-based immunological diseases, including autoimmune syndromes
Pathogenic mechanisms
Viral diagnostics
Tumor and cancer immunology with virus as the primary factor
Viral immunology methods.