Nandeeni Punase, Ganesh V Jamdar, Ghanshyam Mapare, Vishal S Patil, Narendra Nagpure, Niharika Patil, Chandrakantsing V Pardeshi, Chandragouda R Patil
{"title":"In silico, in vitro, and in vivo assessment of chitosan-diltiazem nanoparticles against pulmonary fibrosis.","authors":"Nandeeni Punase, Ganesh V Jamdar, Ghanshyam Mapare, Vishal S Patil, Narendra Nagpure, Niharika Patil, Chandrakantsing V Pardeshi, Chandragouda R Patil","doi":"10.1080/20415990.2025.2478803","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Diltiazem (DIL), a calcium channel blocker, has demonstrated potential ininhibiting fibrosis-related processes, including TGF-β activation, collagen production, and epithelial-mesenchymal transition, making it a promising candidate for idiopathic pulmonary fibrosis (IPF). This study evaluates the anti-fibrotic efficacy of DIL-loaded chitosan (DIL-CHT) and trimethyl chitosan (DIL-TMC) nanoparticles through molecular and experimental approaches.</p><p><strong>Methods: </strong>DIL-CHT and DIL-TMC nanoformulations were developed and analyzed particle size, ζ-potential, entrapment efficiency, and <i>in vitro</i> release. Antifibrotic efficacy in bleomycin (BLM)-induced IPF rat model, was tested at subtherapeutic doses (3 mg/kg/day, i.t.) and DIL alone (10 mg/kg/day, p.o.). DFT (B3LYP/6-31 G**) optimization and molecular docking were conducted to assess electronic properties and interactions among CHT, TMC, and DIL.</p><p><strong>Results: </strong>DIL-TMC and DIL-CHT nanoparticles were 175.6 nm and 267.8 nm, with entrapment efficiencies of 81.72% and 66.0%, respectively; TMC showed a superior 24-hour sustained release. TMC's larger HOMO-LUMO gap (ΔE = -0.260 eV vs. -0.253 eV for CHT) suggests greater stability, supporting its enhanced interaction with DIL. TMC nanoparticles significantly reduced BLM-induced IPF symptoms, i.e. BLM induced increased lung index, hydroxyproline accumulation, oxidative stress in lung tissue, and blood pressure.</p><p><strong>Conclusions: </strong>These findings indicate the strong therapeutic potential of DIL-TMC for IPF with minimal cardiovascular side effects.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"555-568"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140481/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20415990.2025.2478803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: Diltiazem (DIL), a calcium channel blocker, has demonstrated potential ininhibiting fibrosis-related processes, including TGF-β activation, collagen production, and epithelial-mesenchymal transition, making it a promising candidate for idiopathic pulmonary fibrosis (IPF). This study evaluates the anti-fibrotic efficacy of DIL-loaded chitosan (DIL-CHT) and trimethyl chitosan (DIL-TMC) nanoparticles through molecular and experimental approaches.
Methods: DIL-CHT and DIL-TMC nanoformulations were developed and analyzed particle size, ζ-potential, entrapment efficiency, and in vitro release. Antifibrotic efficacy in bleomycin (BLM)-induced IPF rat model, was tested at subtherapeutic doses (3 mg/kg/day, i.t.) and DIL alone (10 mg/kg/day, p.o.). DFT (B3LYP/6-31 G**) optimization and molecular docking were conducted to assess electronic properties and interactions among CHT, TMC, and DIL.
Results: DIL-TMC and DIL-CHT nanoparticles were 175.6 nm and 267.8 nm, with entrapment efficiencies of 81.72% and 66.0%, respectively; TMC showed a superior 24-hour sustained release. TMC's larger HOMO-LUMO gap (ΔE = -0.260 eV vs. -0.253 eV for CHT) suggests greater stability, supporting its enhanced interaction with DIL. TMC nanoparticles significantly reduced BLM-induced IPF symptoms, i.e. BLM induced increased lung index, hydroxyproline accumulation, oxidative stress in lung tissue, and blood pressure.
Conclusions: These findings indicate the strong therapeutic potential of DIL-TMC for IPF with minimal cardiovascular side effects.
期刊介绍:
Delivering therapeutics in a way that is right for the patient - safe, painless, reliable, targeted, efficient and cost effective - is the fundamental aim of scientists working in this area. Correspondingly, this evolving field has already yielded a diversity of delivery methods, including injectors, controlled release formulations, drug eluting implants and transdermal patches. Rapid technological advances and the desire to improve the efficacy and safety profile of existing medications by specific targeting to the site of action, combined with the drive to improve patient compliance, continue to fuel rapid research progress. Furthermore, the emergence of cell-based therapeutics and biopharmaceuticals such as proteins, peptides and nucleotides presents scientists with new and exciting challenges for the application of therapeutic delivery science and technology. Successful delivery strategies increasingly rely upon collaboration across a diversity of fields, including biology, chemistry, pharmacology, nanotechnology, physiology, materials science and engineering. Therapeutic Delivery recognizes the importance of this diverse research platform and encourages the publication of articles that reflect the highly interdisciplinary nature of the field. In a highly competitive industry, Therapeutic Delivery provides the busy researcher with a forum for the rapid publication of original research and critical reviews of all the latest relevant and significant developments, and focuses on how the technological, pharmacological, clinical and physiological aspects come together to successfully deliver modern therapeutics to patients. The journal delivers this essential information in concise, at-a-glance article formats that are readily accessible to the full spectrum of therapeutic delivery researchers.