Development necessitates evolutionarily conserved factors.

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Paco C K Chow, Peter J Bentley
{"title":"Development necessitates evolutionarily conserved factors.","authors":"Paco C K Chow, Peter J Bentley","doi":"10.1038/s41598-025-92541-4","DOIUrl":null,"url":null,"abstract":"<p><p>Early-stage generalised transcription factors in biological development are often evolutionarily conserved across species. Here, we find for the first time that similar factors functionally emerge in an alternative medium of development. Through comprehensively analysing a Neural Cellular Automata (NCA) model of morphogenesis, we find multiple properties of the hidden units that are functionally analogous to early factors in biological development. We test the generalisation abilities of our model through transfer learning of other morphologies and find that developmental strategies learnt by the model are reused to grow new body forms by conserving its early generalised factors. Our paper therefore provides evidence that nature did not become locked into one arbitrary method of developing multicellular organisms: the use of early generalised factors as fundamental control mechanisms and the resulting necessity for evolutionary conservation of those factors may be fundamental to development, regardless of the details of how development is implemented.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"9910"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929755/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-92541-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Early-stage generalised transcription factors in biological development are often evolutionarily conserved across species. Here, we find for the first time that similar factors functionally emerge in an alternative medium of development. Through comprehensively analysing a Neural Cellular Automata (NCA) model of morphogenesis, we find multiple properties of the hidden units that are functionally analogous to early factors in biological development. We test the generalisation abilities of our model through transfer learning of other morphologies and find that developmental strategies learnt by the model are reused to grow new body forms by conserving its early generalised factors. Our paper therefore provides evidence that nature did not become locked into one arbitrary method of developing multicellular organisms: the use of early generalised factors as fundamental control mechanisms and the resulting necessity for evolutionary conservation of those factors may be fundamental to development, regardless of the details of how development is implemented.

Abstract Image

Abstract Image

Abstract Image

发展需要进化上保守的因素。
在生物发育的早期阶段,一般的转录因子在物种间往往是进化保守的。在这里,我们首次发现,类似的因素在功能上出现在另一种发展媒介中。通过对神经细胞自动机(NCA)形态发生模型的综合分析,我们发现隐藏单元的多种特性在功能上类似于生物发育的早期因素。我们通过对其他形态的迁移学习来测试我们模型的泛化能力,并发现通过保留其早期的泛化因素,模型学习的发展策略被重用以生长新的体型。因此,我们的论文提供了证据,证明自然界并没有被锁定在一种任意的多细胞生物发展方法中:使用早期的一般因素作为基本控制机制,以及由此产生的对这些因素的进化保护的必要性,可能是发展的基础,而不管发展是如何实现的细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信