{"title":"Comprehensive framework for smart residential demand side management with electric vehicle integration and advanced optimization techniques.","authors":"Subhasis Panda, Indu Sekhar Samanta, Buddhadeva Sahoo, Pravat Kumar Rout, Binod Kumar Sahu, Mohit Bajaj, Vojtech Blazek, Lukas Prokop, Stanislav Misak","doi":"10.1038/s41598-025-93817-5","DOIUrl":null,"url":null,"abstract":"<p><p>The exponential deployment of electric vehicles (EVs) in the residential sectors in recent years allows better energy utilization in the decentralized and centralized levels of distribution systems due to their bidirectional operation and energy storage capabilities. However, to execute these, it is necessary to adopt residential demand side management (RDSM) to schedule energy utilization effectively to fetch economical and efficient energy consumption and grid stability and reliability, particularly during peak load conditions. The paper aims to formulate a robust and efficient RDSM technique to provide an energy utilization scheduling considering various influential factors and critical roles of EVs in RDSM. A Binary Whale Optimization Algorithm (BWOA) approach is proposed as an efficient algorithm for EV's impact on the RDSM for better energy scheduling. A single-objective formulation is presented with detailed modelling considering economic energy utilization as the primary objective with all possible equality and inequality system operational constraints. Secondly, the impact of EVs on the RDSM is studied from various perspectives in result analysis, considering EVs as load, storage devices, and different bidirectional modes of operation with other vehicles, residential components, and grids. In addition, the EVs role and the mutual influence with the integration of renewable energy sources (RES) and energy storage devices (ESDs) are extensively analyzed to provide better residential energy management (REM) in terms of economic, environmental, robust, and reliable points of view. The load priority based on consumer choice is also incorporated in the formulation. Extensive simulation is done for the proposed approach to show the effect of EVs on REM, and the results are impressive to show the EV's role as a load, as a storage device, and as a mutually supportive device to RES, ESD, and grid.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"9948"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929861/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-93817-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The exponential deployment of electric vehicles (EVs) in the residential sectors in recent years allows better energy utilization in the decentralized and centralized levels of distribution systems due to their bidirectional operation and energy storage capabilities. However, to execute these, it is necessary to adopt residential demand side management (RDSM) to schedule energy utilization effectively to fetch economical and efficient energy consumption and grid stability and reliability, particularly during peak load conditions. The paper aims to formulate a robust and efficient RDSM technique to provide an energy utilization scheduling considering various influential factors and critical roles of EVs in RDSM. A Binary Whale Optimization Algorithm (BWOA) approach is proposed as an efficient algorithm for EV's impact on the RDSM for better energy scheduling. A single-objective formulation is presented with detailed modelling considering economic energy utilization as the primary objective with all possible equality and inequality system operational constraints. Secondly, the impact of EVs on the RDSM is studied from various perspectives in result analysis, considering EVs as load, storage devices, and different bidirectional modes of operation with other vehicles, residential components, and grids. In addition, the EVs role and the mutual influence with the integration of renewable energy sources (RES) and energy storage devices (ESDs) are extensively analyzed to provide better residential energy management (REM) in terms of economic, environmental, robust, and reliable points of view. The load priority based on consumer choice is also incorporated in the formulation. Extensive simulation is done for the proposed approach to show the effect of EVs on REM, and the results are impressive to show the EV's role as a load, as a storage device, and as a mutually supportive device to RES, ESD, and grid.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.