Oral delivery of protein and peptide therapeutics.

3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology
Vivek P Chavda, Pankti C Balar
{"title":"Oral delivery of protein and peptide therapeutics.","authors":"Vivek P Chavda, Pankti C Balar","doi":"10.1016/bs.pmbts.2024.11.003","DOIUrl":null,"url":null,"abstract":"<p><p>Oral administration of proteins and peptides has gained significant attention recently due to its potential to transform therapeutic strategies, providing a non-invasive and patient-friendly method for delivering biopharmaceuticals. The primary hurdle in oral delivery stems from the harsh conditions of the gastrointestinal (GI) tract, characterized by acidic pH, enzymatic degradation, and limited permeability across the intestinal epithelium. Various innovative approaches have emerged to overcome these challenges, including nanoparticle-based delivery systems, mucoadhesive formulations, and chemical modifications of peptides aimed at improving stability and absorption rates. Nanoparticle-based delivery systems, such as liposomes, polymeric nanoparticles, and solid lipid nanoparticles, hold promise in protecting proteins and peptides from enzymatic degradation while enhancing their bioavailability. These nanoparticles can be tailored to target specific areas within the GI tract, extending drug release and enhancing therapeutic effectiveness. Mucoadhesive formulations utilize polymers like chitosan, alginate, and polyethylene glycol (PEG) derivatives to adhere to GI mucosal surfaces, prolonging residence time and facilitating drug absorption. Chemical modifications, such as PEGylation, glycosylation, and lipidation have been employed to enhance the stability and permeability of proteins and peptides in the GI tract. PEGylation, in particular, has been widely used to extend the circulation half-life and reduce the immunogenicity of therapeutic proteins. Advancements in nanotechnology, especially the development of smart nanocarriers capable of responsive drug release triggered by pH or enzymatic stimuli, show promise in further improving oral delivery of proteins and peptides. The integration of bioinformatics and computational modeling techniques has facilitated the design of novel drug delivery systems with optimized pharmacokinetic profiles. This chapter focuses on the advancements and challenges in the oral delivery of protein and peptide-based drugs, highlighting the innovative strategies being explored to enhance therapeutic outcomes.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"212 ","pages":"355-387"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in molecular biology and translational science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.pmbts.2024.11.003","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Oral administration of proteins and peptides has gained significant attention recently due to its potential to transform therapeutic strategies, providing a non-invasive and patient-friendly method for delivering biopharmaceuticals. The primary hurdle in oral delivery stems from the harsh conditions of the gastrointestinal (GI) tract, characterized by acidic pH, enzymatic degradation, and limited permeability across the intestinal epithelium. Various innovative approaches have emerged to overcome these challenges, including nanoparticle-based delivery systems, mucoadhesive formulations, and chemical modifications of peptides aimed at improving stability and absorption rates. Nanoparticle-based delivery systems, such as liposomes, polymeric nanoparticles, and solid lipid nanoparticles, hold promise in protecting proteins and peptides from enzymatic degradation while enhancing their bioavailability. These nanoparticles can be tailored to target specific areas within the GI tract, extending drug release and enhancing therapeutic effectiveness. Mucoadhesive formulations utilize polymers like chitosan, alginate, and polyethylene glycol (PEG) derivatives to adhere to GI mucosal surfaces, prolonging residence time and facilitating drug absorption. Chemical modifications, such as PEGylation, glycosylation, and lipidation have been employed to enhance the stability and permeability of proteins and peptides in the GI tract. PEGylation, in particular, has been widely used to extend the circulation half-life and reduce the immunogenicity of therapeutic proteins. Advancements in nanotechnology, especially the development of smart nanocarriers capable of responsive drug release triggered by pH or enzymatic stimuli, show promise in further improving oral delivery of proteins and peptides. The integration of bioinformatics and computational modeling techniques has facilitated the design of novel drug delivery systems with optimized pharmacokinetic profiles. This chapter focuses on the advancements and challenges in the oral delivery of protein and peptide-based drugs, highlighting the innovative strategies being explored to enhance therapeutic outcomes.

蛋白质和肽的口服给药具有改变治疗策略的潜力,为生物制药的给药提供了一种非侵入性、对患者友好的方法,因此近来备受关注。口服给药的主要障碍源于胃肠道(GI)的恶劣条件,其特点是酸性 pH 值、酶降解和肠上皮细胞的有限渗透性。为克服这些挑战,出现了各种创新方法,包括纳米颗粒给药系统、粘液黏附配方以及旨在提高稳定性和吸收率的肽化学修饰。以纳米颗粒为基础的给药系统,如脂质体、聚合物纳米颗粒和固体脂质纳米颗粒,有望保护蛋白质和肽免受酶降解,同时提高其生物利用率。这些纳米颗粒可针对消化道内的特定区域进行定制,从而延长药物释放时间并提高治疗效果。粘液粘附制剂利用壳聚糖、海藻酸盐和聚乙二醇(PEG)衍生物等聚合物粘附在消化道粘膜表面,延长停留时间,促进药物吸收。聚乙二醇化、糖基化和脂化等化学修饰已被用于提高蛋白质和肽在消化道中的稳定性和渗透性。特别是 PEG 化,已被广泛用于延长治疗蛋白质的循环半衰期和降低其免疫原性。纳米技术的进步,特别是能够在 pH 值或酶刺激下释放药物的智能纳米载体的开发,为进一步改善蛋白质和肽的口服给药带来了希望。生物信息学与计算建模技术的结合促进了具有优化药代动力学特征的新型给药系统的设计。本章将重点介绍蛋白质和肽类药物口服给药方面的进展和挑战,并着重介绍为提高治疗效果而探索的创新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Progress in Molecular Biology and Translational Science (PMBTS) provides in-depth reviews on topics of exceptional scientific importance. If today you read an Article or Letter in Nature or a Research Article or Report in Science reporting findings of exceptional importance, you likely will find comprehensive coverage of that research area in a future PMBTS volume.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信