Upcycling of Degraded Prussian Blue into Layered Materials for Sodium-Ion Battery.

IF 11 1区 综合性期刊 Q1 Multidisciplinary
Research Pub Date : 2025-03-21 eCollection Date: 2025-01-01 DOI:10.34133/research.0643
Weng-Lam Wong, Jiahui Xu, Yun Zhao, Yadong Wang, Hao Du, Junhao Zhang, Yuqiong Kang, Yuqing Chen, Feiyu Kang, Baohua Li
{"title":"Upcycling of Degraded Prussian Blue into Layered Materials for Sodium-Ion Battery.","authors":"Weng-Lam Wong, Jiahui Xu, Yun Zhao, Yadong Wang, Hao Du, Junhao Zhang, Yuqiong Kang, Yuqing Chen, Feiyu Kang, Baohua Li","doi":"10.34133/research.0643","DOIUrl":null,"url":null,"abstract":"<p><p>Prussian blue and Prussian blue analogs are widely used in sodium-ion batteries (SIBs). In this study, we upcycle the degraded Prussian blue directly into layered materials for SIBs through thermal treatment. Prussian blue thermally decomposes to form metal oxides, which then recrystallize into layered metal oxides with metal-nitrogen bond on their surface under suitable temperature conditions. This transformation method is similar to solid-state synthesis, allowing for the pre-addition of necessary components before material conversion to optimize the composition and integrity of the target materials. Based on in situ x-ray diffraction observations of the crystal structure changes of Prussian blue at different temperatures, we demonstrate 1,000 °C as the optimal temperature for converting to layered materials. These materials exhibit an initial discharge capacity of 122.3 mAh g<sup>-1</sup> and good rate and cycling stability. We hope that this research will promote the sustainable development of the SIB industry.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0643"},"PeriodicalIF":11.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11927955/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0643","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Prussian blue and Prussian blue analogs are widely used in sodium-ion batteries (SIBs). In this study, we upcycle the degraded Prussian blue directly into layered materials for SIBs through thermal treatment. Prussian blue thermally decomposes to form metal oxides, which then recrystallize into layered metal oxides with metal-nitrogen bond on their surface under suitable temperature conditions. This transformation method is similar to solid-state synthesis, allowing for the pre-addition of necessary components before material conversion to optimize the composition and integrity of the target materials. Based on in situ x-ray diffraction observations of the crystal structure changes of Prussian blue at different temperatures, we demonstrate 1,000 °C as the optimal temperature for converting to layered materials. These materials exhibit an initial discharge capacity of 122.3 mAh g-1 and good rate and cycling stability. We hope that this research will promote the sustainable development of the SIB industry.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信