Weng-Lam Wong, Jiahui Xu, Yun Zhao, Yadong Wang, Hao Du, Junhao Zhang, Yuqiong Kang, Yuqing Chen, Feiyu Kang, Baohua Li
{"title":"Upcycling of Degraded Prussian Blue into Layered Materials for Sodium-Ion Battery.","authors":"Weng-Lam Wong, Jiahui Xu, Yun Zhao, Yadong Wang, Hao Du, Junhao Zhang, Yuqiong Kang, Yuqing Chen, Feiyu Kang, Baohua Li","doi":"10.34133/research.0643","DOIUrl":null,"url":null,"abstract":"<p><p>Prussian blue and Prussian blue analogs are widely used in sodium-ion batteries (SIBs). In this study, we upcycle the degraded Prussian blue directly into layered materials for SIBs through thermal treatment. Prussian blue thermally decomposes to form metal oxides, which then recrystallize into layered metal oxides with metal-nitrogen bond on their surface under suitable temperature conditions. This transformation method is similar to solid-state synthesis, allowing for the pre-addition of necessary components before material conversion to optimize the composition and integrity of the target materials. Based on in situ x-ray diffraction observations of the crystal structure changes of Prussian blue at different temperatures, we demonstrate 1,000 °C as the optimal temperature for converting to layered materials. These materials exhibit an initial discharge capacity of 122.3 mAh g<sup>-1</sup> and good rate and cycling stability. We hope that this research will promote the sustainable development of the SIB industry.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0643"},"PeriodicalIF":11.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11927955/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0643","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
Prussian blue and Prussian blue analogs are widely used in sodium-ion batteries (SIBs). In this study, we upcycle the degraded Prussian blue directly into layered materials for SIBs through thermal treatment. Prussian blue thermally decomposes to form metal oxides, which then recrystallize into layered metal oxides with metal-nitrogen bond on their surface under suitable temperature conditions. This transformation method is similar to solid-state synthesis, allowing for the pre-addition of necessary components before material conversion to optimize the composition and integrity of the target materials. Based on in situ x-ray diffraction observations of the crystal structure changes of Prussian blue at different temperatures, we demonstrate 1,000 °C as the optimal temperature for converting to layered materials. These materials exhibit an initial discharge capacity of 122.3 mAh g-1 and good rate and cycling stability. We hope that this research will promote the sustainable development of the SIB industry.
普鲁士蓝和普鲁士蓝类似物广泛用于钠离子电池(sib)。在本研究中,我们通过热处理将降解的普鲁士蓝直接升级为sib层状材料。普鲁士蓝热分解形成金属氧化物,然后在合适的温度条件下再结晶成层状金属氧化物,表面有金属-氮键。这种转化方法类似于固态合成,允许在材料转化之前预先添加必要的组分,以优化目标材料的组成和完整性。基于不同温度下普鲁士蓝晶体结构变化的原位x射线衍射观察,我们证明了1000℃是转化为层状材料的最佳温度。这些材料的初始放电容量为122.3 mAh g-1,具有良好的倍率和循环稳定性。我们希望本研究能够促进SIB产业的可持续发展。
期刊介绍:
Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe.
Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.