Špela Mandl, Bruno Di Geronimo, Santiago Alonso-Gil, Christoph Grininger, Gibu George, Ulrika Ferstl, Sereina Annik Herzog, Bojan Žagrović, Christoph Nusshold, Tea Pavkov-Keller, Pedro A Sánchez-Murcia
{"title":"A new view of missense mutations in α-mannosidosis using molecular dynamics conformational ensembles.","authors":"Špela Mandl, Bruno Di Geronimo, Santiago Alonso-Gil, Christoph Grininger, Gibu George, Ulrika Ferstl, Sereina Annik Herzog, Bojan Žagrović, Christoph Nusshold, Tea Pavkov-Keller, Pedro A Sánchez-Murcia","doi":"10.1002/pro.70080","DOIUrl":null,"url":null,"abstract":"<p><p>The mutation of remote positions on enzyme scaffolds and how these residue changes can affect enzyme catalysis is still far from being fully understood. One paradigmatic example is the group of lysosomal storage disorders, where the enzyme activity of a lysosomal enzyme is abolished or severely reduced. In this work, we analyze molecular dynamics simulation conformational ensembles to unveil the molecular features controlling the deleterious effects of the 43 reported missense mutations in the human lysosomal α-mannosidase. Using residue descriptors for protein dynamics, their coupling with the active site, and their impact on protein stability, we have assigned the contribution of each of the missense mutations into protein stability, protein dynamics, and their connectivity with the active site. We demonstrate here that the use of conformational ensembles is a powerful approach not only to better understand missense mutations at the molecular level but also to revisit the missense mutations reported in lysosomal storage disorders in order to aid the treatment of these diseases.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 4","pages":"e70080"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11931667/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70080","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The mutation of remote positions on enzyme scaffolds and how these residue changes can affect enzyme catalysis is still far from being fully understood. One paradigmatic example is the group of lysosomal storage disorders, where the enzyme activity of a lysosomal enzyme is abolished or severely reduced. In this work, we analyze molecular dynamics simulation conformational ensembles to unveil the molecular features controlling the deleterious effects of the 43 reported missense mutations in the human lysosomal α-mannosidase. Using residue descriptors for protein dynamics, their coupling with the active site, and their impact on protein stability, we have assigned the contribution of each of the missense mutations into protein stability, protein dynamics, and their connectivity with the active site. We demonstrate here that the use of conformational ensembles is a powerful approach not only to better understand missense mutations at the molecular level but also to revisit the missense mutations reported in lysosomal storage disorders in order to aid the treatment of these diseases.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).