B. Kalyanasundar, Andrew Harley, Charlotte Klimovich, Susan Travers
{"title":"Chemogenetic suppression of NST GABA neurons reveals inhibition of behavioral responses to sucrose and quinine","authors":"B. Kalyanasundar, Andrew Harley, Charlotte Klimovich, Susan Travers","doi":"10.1016/j.physbeh.2025.114889","DOIUrl":null,"url":null,"abstract":"<div><div>Central taste processing begins in the rostral nucleus of the solitary tract (rNST), a region rich in GABAergic neurons. We recently showed that chemogenetic activation of rNST GABA/GAD65 neurons dampens behavioral acceptance of palatable (sucrose and maltodextrin) and increases acceptance of unpalatable (quinine) taste stimuli (Travers et al., 2022). Here, we investigated whether suppressing activity in rNST GABA neurons likewise affects behavioral taste responsivity. Using mice in which Cre was expressed under the control of the GAD65 promoter, we made bilateral rNST injections of a Cre-dependent AAV driving expression of the inhibitory DREADD, hM4Di. Subsequently, we assessed concentration-dependent licking responses to sucrose, quinine, and quinine mixed in 300 mM sucrose. Relative to intraperitoneal injections of saline, clozapine-N-oxide injections significantly increased licking to sucrose and decreased licking to quinine, regardless of whether it was presented alone or mixed in sucrose. Neither oromotor (inter-lick intervals) nor appetitive (number of trials) variables were affected. Consistent with these behavioral effects, the neuronal activity marker, Fos, was expressed in more NST, reticular formation, and parabrachial nucleus cells following clozapine-N-oxide injections. A final experiment compared effects of chemogenetic GABA inhibition on sucrose licking in food deprived versus fed mice. Inhibiting GABA neurons enhanced sucrose licking in both homeostatic states. However, the impact was more marked under the latter state in female mice, suggesting a sex difference in the impact of satiety signals on GABA rNST neurons.</div></div>","PeriodicalId":20201,"journal":{"name":"Physiology & Behavior","volume":"295 ","pages":"Article 114889"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology & Behavior","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031938425000903","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Central taste processing begins in the rostral nucleus of the solitary tract (rNST), a region rich in GABAergic neurons. We recently showed that chemogenetic activation of rNST GABA/GAD65 neurons dampens behavioral acceptance of palatable (sucrose and maltodextrin) and increases acceptance of unpalatable (quinine) taste stimuli (Travers et al., 2022). Here, we investigated whether suppressing activity in rNST GABA neurons likewise affects behavioral taste responsivity. Using mice in which Cre was expressed under the control of the GAD65 promoter, we made bilateral rNST injections of a Cre-dependent AAV driving expression of the inhibitory DREADD, hM4Di. Subsequently, we assessed concentration-dependent licking responses to sucrose, quinine, and quinine mixed in 300 mM sucrose. Relative to intraperitoneal injections of saline, clozapine-N-oxide injections significantly increased licking to sucrose and decreased licking to quinine, regardless of whether it was presented alone or mixed in sucrose. Neither oromotor (inter-lick intervals) nor appetitive (number of trials) variables were affected. Consistent with these behavioral effects, the neuronal activity marker, Fos, was expressed in more NST, reticular formation, and parabrachial nucleus cells following clozapine-N-oxide injections. A final experiment compared effects of chemogenetic GABA inhibition on sucrose licking in food deprived versus fed mice. Inhibiting GABA neurons enhanced sucrose licking in both homeostatic states. However, the impact was more marked under the latter state in female mice, suggesting a sex difference in the impact of satiety signals on GABA rNST neurons.
期刊介绍:
Physiology & Behavior is aimed at the causal physiological mechanisms of behavior and its modulation by environmental factors. The journal invites original reports in the broad area of behavioral and cognitive neuroscience, in which at least one variable is physiological and the primary emphasis and theoretical context are behavioral. The range of subjects includes behavioral neuroendocrinology, psychoneuroimmunology, learning and memory, ingestion, social behavior, and studies related to the mechanisms of psychopathology. Contemporary reviews and theoretical articles are welcomed and the Editors invite such proposals from interested authors.