Application of Kirchhoff's Laws to pharmacologic and pharmacokinetic analyses.

IF 19.3 1区 医学 Q1 PHARMACOLOGY & PHARMACY
Pharmacological Reviews Pub Date : 2025-05-01 Epub Date: 2025-03-21 DOI:10.1016/j.pharmr.2025.100050
Leslie Z Benet, Jasleen K Sodhi, Markus Ville Tiitto, Yue Xiang
{"title":"Application of Kirchhoff's Laws to pharmacologic and pharmacokinetic analyses.","authors":"Leslie Z Benet, Jasleen K Sodhi, Markus Ville Tiitto, Yue Xiang","doi":"10.1016/j.pharmr.2025.100050","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, we introduced a straightforward approach to derive clearance and rate constant equations, without relying on differential equations, utilizing Kirchhoff's Laws, a well known physics methodology used to describe rate-defining processes either in series or parallel. Manuscripts from our laboratory have re-examined published experimental data, demonstrating that the Kirchhoff's Laws methodology can explain data previously considered anomalous, such as the following: (1) all experimental perfused liver clearance data conforming to the equation once thought to represent the unphysiological well stirred model, (2) instances where linear pharmacokinetic systemic bioavailability determinations exceed unity, (3) renal clearance being influenced by drug input processes, (4) statistically significant differences in bioavailability measures between urinary excretion and systemic concentration measurements, and (5) how the long-accepted steady-state clearance approach used in pharmacokinetics for the past half-century leads to unrealistic conclusions about the relationship between liver-to-blood Kp<sub>uu</sub> and hepatic availability F<sub>H</sub>. These findings demonstrate the potential for errors in pharmacokinetic evaluations that rely on differential equations. The Kirchhoff's Laws approach is applicable to all pharmacokinetic analyses of quality experimental data, both those that align with present pharmacokinetic theory, and those that do not. Although 3 publications have attempted to rebut our position, they fail to address unexplained experimental data, and we detail here why these analyses are invalid. Our discoveries are ongoing. Additionally, we briefly discuss the application of Kirchoff's Laws to saturable nonlinear kinetics, explaining increased pharmacodynamic response for extended vs immediate release dosage forms, as well as the advantages of successfully formulating high hepatic extraction drugs. SIGNIFICANCE STATEMENT: The Kirchhoff's Laws approach to deriving clearance equations for linear systems in parallel or in series, independent of differential equations, successfully describes anomalous published pharmacokinetic data that have previously been unexplained. We review 9 experimental outcomes in humans that are newly explained using the Kirchhoff's Laws approach, including the extension to deriving nonlinear saturable clearance relationships.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 3","pages":"100050"},"PeriodicalIF":19.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.pharmr.2025.100050","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, we introduced a straightforward approach to derive clearance and rate constant equations, without relying on differential equations, utilizing Kirchhoff's Laws, a well known physics methodology used to describe rate-defining processes either in series or parallel. Manuscripts from our laboratory have re-examined published experimental data, demonstrating that the Kirchhoff's Laws methodology can explain data previously considered anomalous, such as the following: (1) all experimental perfused liver clearance data conforming to the equation once thought to represent the unphysiological well stirred model, (2) instances where linear pharmacokinetic systemic bioavailability determinations exceed unity, (3) renal clearance being influenced by drug input processes, (4) statistically significant differences in bioavailability measures between urinary excretion and systemic concentration measurements, and (5) how the long-accepted steady-state clearance approach used in pharmacokinetics for the past half-century leads to unrealistic conclusions about the relationship between liver-to-blood Kpuu and hepatic availability FH. These findings demonstrate the potential for errors in pharmacokinetic evaluations that rely on differential equations. The Kirchhoff's Laws approach is applicable to all pharmacokinetic analyses of quality experimental data, both those that align with present pharmacokinetic theory, and those that do not. Although 3 publications have attempted to rebut our position, they fail to address unexplained experimental data, and we detail here why these analyses are invalid. Our discoveries are ongoing. Additionally, we briefly discuss the application of Kirchoff's Laws to saturable nonlinear kinetics, explaining increased pharmacodynamic response for extended vs immediate release dosage forms, as well as the advantages of successfully formulating high hepatic extraction drugs. SIGNIFICANCE STATEMENT: The Kirchhoff's Laws approach to deriving clearance equations for linear systems in parallel or in series, independent of differential equations, successfully describes anomalous published pharmacokinetic data that have previously been unexplained. We review 9 experimental outcomes in humans that are newly explained using the Kirchhoff's Laws approach, including the extension to deriving nonlinear saturable clearance relationships.

基尔霍夫定律在药理学和药代动力学分析中的应用。
最近,我们介绍了一种直接的方法来推导间隙和速率常数方程,而不依赖于微分方程,利用基尔霍夫定律,一种众所周知的物理方法,用于描述串联或并联的速率定义过程。我们实验室的手稿重新检查了已发表的实验数据,证明基尔霍夫定律的方法可以解释以前被认为异常的数据,例如:(1)所有实验灌注肝清除率数据符合曾经被认为代表非生理性搅拌模型的方程,(2)线性药代动力学系统生物利用度测定超过统一的情况,(3)肾脏清除率受到药物输入过程的影响,(4)尿排泄和系统浓度测量之间的生物利用度测量在统计学上存在显著差异,(5)过去半个世纪以来,在药代动力学中使用的长期接受的稳态清除方法如何导致关于肝-血Kpuu和肝脏可得性FH之间关系的不切实际的结论。这些发现表明在依赖微分方程的药代动力学评估中可能存在错误。基尔霍夫定律的方法适用于所有高质量实验数据的药代动力学分析,无论是那些与当前药代动力学理论一致的,还是那些与之不一致的。尽管有3篇出版物试图反驳我们的立场,但他们未能解决无法解释的实验数据,我们在这里详细说明为什么这些分析是无效的。我们的发现还在继续。此外,我们简要讨论了基尔霍夫定律在饱和非线性动力学中的应用,解释了缓释剂型与立即释放剂型的药效学反应增加,以及成功配制高肝提取药物的优势。意义声明:用Kirchhoff定律方法推导平行或串联线性系统的间隙方程,独立于微分方程,成功地描述了以前无法解释的已发表的异常药代动力学数据。我们回顾了使用基尔霍夫定律方法解释的9项人类实验结果,包括推导非线性饱和间隙关系的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmacological Reviews
Pharmacological Reviews 医学-药学
CiteScore
34.70
自引率
0.50%
发文量
40
期刊介绍: Pharmacological Reviews is a highly popular and well-received journal that has a long and rich history of success. It was first published in 1949 and is currently published bimonthly online by the American Society for Pharmacology and Experimental Therapeutics. The journal is indexed or abstracted by various databases, including Biological Abstracts, BIOSIS Previews Database, Biosciences Information Service, Current Contents/Life Sciences, EMBASE/Excerpta Medica, Index Medicus, Index to Scientific Reviews, Medical Documentation Service, Reference Update, Research Alerts, Science Citation Index, and SciSearch. Pharmacological Reviews offers comprehensive reviews of new pharmacological fields and is able to stay up-to-date with published content. Overall, it is highly regarded by scholars.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信