Green Synthesis and Characterization of Ag Nanoparticles Using Carissa spinarum L. Leaf Extract: Evaluation for Their Antimicrobial and Antioxidant Activities.
Huma Firdous, Rizwan Taj Khan, Muhammad Manzoor, Syed Waseem Gillani, Muhammad Nasir, Mumna Munir, Shabir Ahmad
{"title":"Green Synthesis and Characterization of Ag Nanoparticles Using Carissa spinarum L. Leaf Extract: Evaluation for Their Antimicrobial and Antioxidant Activities.","authors":"Huma Firdous, Rizwan Taj Khan, Muhammad Manzoor, Syed Waseem Gillani, Muhammad Nasir, Mumna Munir, Shabir Ahmad","doi":"10.1002/jemt.24817","DOIUrl":null,"url":null,"abstract":"<p><p>The synthesis of nanoparticles (NPs) using plants, particularly medicinal plants, is an increasingly popular research field. This method provides a safe, sustainable, fast, and easy way to produce NPs for various applications, including therapeutics and nutrition. The objective of this study was to synthesize silver nanoparticles (AgNPs) at room temperature using Carissa spinarum leaf extract as a capping and bioreduction agent. This method is cost-effective and user-friendly. The reaction process was investigated using UV spectroscopy. We confirmed the synthesis of AgNO<sub>3</sub> through SEM, FTIR, and XRD techniques. The SEM data revealed that the nanoparticles were spherical in shape, while XRD analysis confirmed their crystalline morphology with an average particle size of 21.80 nm. FTIR analysis indicated the presence of biocompound functional groups on the surface of AgNPs. We investigated the antibacterial activity of AgNPs using the disc diffusion method and observed that Gram-negative bacteria were more susceptible than Gram-positive bacteria. The antioxidant capabilities of the produced nanoparticles were tested using DPPH and ABTS tests, and the results were given as IC50 values. Furthermore, the antifungal potential was assessed using the agar well diffusion method. In addition, we are looking at the viability of plant-mediated nanoparticle synthesis and prospective applications, taking into account engineering, economic, and environmental factors. This study highlights the practical importance of plant-mediated nanoparticle synthesis in terms of engineering, economics, and the environment, as well as its extensive application in biomedical and environmental sectors.</p>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy Research and Technique","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/jemt.24817","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The synthesis of nanoparticles (NPs) using plants, particularly medicinal plants, is an increasingly popular research field. This method provides a safe, sustainable, fast, and easy way to produce NPs for various applications, including therapeutics and nutrition. The objective of this study was to synthesize silver nanoparticles (AgNPs) at room temperature using Carissa spinarum leaf extract as a capping and bioreduction agent. This method is cost-effective and user-friendly. The reaction process was investigated using UV spectroscopy. We confirmed the synthesis of AgNO3 through SEM, FTIR, and XRD techniques. The SEM data revealed that the nanoparticles were spherical in shape, while XRD analysis confirmed their crystalline morphology with an average particle size of 21.80 nm. FTIR analysis indicated the presence of biocompound functional groups on the surface of AgNPs. We investigated the antibacterial activity of AgNPs using the disc diffusion method and observed that Gram-negative bacteria were more susceptible than Gram-positive bacteria. The antioxidant capabilities of the produced nanoparticles were tested using DPPH and ABTS tests, and the results were given as IC50 values. Furthermore, the antifungal potential was assessed using the agar well diffusion method. In addition, we are looking at the viability of plant-mediated nanoparticle synthesis and prospective applications, taking into account engineering, economic, and environmental factors. This study highlights the practical importance of plant-mediated nanoparticle synthesis in terms of engineering, economics, and the environment, as well as its extensive application in biomedical and environmental sectors.
期刊介绍:
Microscopy Research and Technique (MRT) publishes articles on all aspects of advanced microscopy original architecture and methodologies with applications in the biological, clinical, chemical, and materials sciences. Original basic and applied research as well as technical papers dealing with the various subsets of microscopy are encouraged. MRT is the right form for those developing new microscopy methods or using the microscope to answer key questions in basic and applied research.